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Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fish, birds,
micro-organisms,... and artificial robots for unmanned vehicle operation.
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Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fish, birds,
micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individuals”

aAoki, Helmerijk et al., Barbaro, Birnir et al.
@ Repulsion Region: Ry.
@ Attraction Region: Ay.

@ Orientation Region: O.
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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
dX[

— =V,

dt

dV,‘
m—- = (= B v ;VK P — Xj).
JFi

U(r)

Pair-wise
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JFi

Model assumptions:
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determines an asymptotic speed of U
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@ Attraction/Repulsion modeled by an
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Pair-wise

k(r) = —Cue " 4 Cre R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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Collective Behavior Models

2nd Order Model: Newton’s like equations

v _
dr

dV,‘
—_ = — B
m 7 (a |v

Model assumptions:

@ Self-propulsion and friction terms
determines an asymptotic speed of

Va/B.

@ Attraction/Repulsion modeled by an

effective pairwise potential K (x) = k(r).

k(r) = —Cue " 4 Cre R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.

D’Orsogna, Bertozzi et al. model (PRL 2006):

ZVK Xi — Xj).

JF#

C = CR/CA > 1,£:‘€R/‘€A < 1 and
ce <1

U(r)

Pair-wise
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Collective Behavior Models

Velocity consensus model
Cucker-Smale Model (IEEE Automatic Control 2007):

dX[
— Vl'7
dt
N
dv; s
= Dy (v —mi),

with the communication rate, v > 0:

1
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From micro to macro: PDE models

Convergence of the particle method

Empirical measures: if x;, v; : [0, T) — R?, fori = 1,

..., N, is asolution to the
ODE system,

dx;
dt

=i,

i - +
dr
then the fy : [0, T) — P1(RY) given by

N

N
n(r) = Zm,é(h(,))\,l(,)) with Zm,- =1,
i=1

i=1

is expected to be the solution corresponding to initial atomic measures.
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Convergence of the particle method
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From micro to macro: PDE models

Convergence of the particle method

Empirical measures: if x;, v; : [0,T) — RY fori=1,.

., N, is a solution to the
ODE system,

dx,-
a o
e . . orientation
propulsion-friction ~ attraction-repulsion
dv; 2
d—[' = (a=BWwl v - Zm]VK ) + ija,/ Vi)

J#
then the fy : [0, T) — P1(RY) given by

N

N
() = Zm,é(,‘,(,))\,l(,)) with Zm,- =1,
i=1

i=1

is expected to be the solution corresponding to initial atomic measures.



From micro to macro: PDE models

Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

% +v- Vi +divy[(e - 5\"\2)#} — div, [(VK * p)f] = 0.
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From micro to macro: PDE models

Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

% + v Vof +divi[(a — Bv[*)vf] — div, [(V.K x p)f] = 0.

Velocity consensus Model:

of - v—w g N e
i +v-Vyf =V, [(/&2(/ W.f@:”ﬁ) dy dW).f(X-,‘vt)}

=) (xvi0)

Orientation, Attraction and Repulsion:

% +v- fo - diVV [(V)fK * p)ﬂ = v" ' [E(f)(xv v, T)f(x, Vs [)} .
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Qualitative Properties & Hydrodynamics

Macroscopic equations

Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time,
fx,v, 1) = p(x,1) (v — u(x, 1)) is a distributional solution if and only if,

op . B
o + divy(pu) = 0,

Ly puVu=pla—p

P o ulYu — p (V.K * p).

Tenet= 451









Critical thresholds
@O
Main equations

Outline

e Critical thresholds
@ Main equations




Critical thresholds
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Main equations

Main equations

Euler equations with nonlocal forces(alignment-attractive/repulsive forces):
Op+0i(pu) =0, xeR, >0,

O + udou = / Blx — ) (uly) — u(x)p(s) dy — K x p,

Basic assumptions:

@ pis a probability density function, i.e.,

p('7 I)HL] =1
@ The influence function 1» € W"*°(R) is symmetry and uniformly bounded:

0 < ¢ < Y(x) = P(—x) < Yu.
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Euler-Alignment system

Euler-Alignment system

We consider the Euler-Alignment system:
Op+0i(pu) =0, xeR, >0,
o udas = [ Dx=3)(u(s) = u)p(r) .
Idea of the proof: Differentiate the velocity equation with respect to x to get

(O + ude)v = —v* = (Y x p)v + 0t  (pu) — ude(¥ * p),

where v = O,u.

Goal: Classify the initial configurations that leading to global regularity or finite time
blow-up of solutions:

- Ifvo > o4, v(r) exists for all time.

- Ifvg < o, v(f) — —oc in finite time.
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Euler-Alignment system

Previous result

Tadmor-Tan(Proc. Royal Soc. A, 2014):

(0r + ud)v = :ﬁ —(p*p)v +0 x (pu) — ud(¢Y x p) .

Bad Good Bad

Main idea: Compact support of the density p & Large-time behaviour

S(t) := sup x—y <D< o0,
x,yESUPP(p(1))

V() = sup lu(x, 1) —u(y,t)| = Oast — oo,
x,yeSUpP(p(1))

exponentially fast.
We now know how to hand the “Good" and “Bad" terms.

@ Yxp>1Y(D)>0
o 110.45 % (pu) — ud (5 p)lu= S e~
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Euler-Alignment system

Previous result

Set
vo:= inf  Qwo(x) and Vp:= sup  |uo(x) — uo(y)|-

xeSUPP(po) x,yE€SUPP(po)
Theorem (Tadmor-Tan, 2014)
o (Subcritical region)lf the initial configurations satisfy

YA (D)m
Vo < ———2
*= 49l

then Owu(x, t) remains uniformly bounded for all (x,t) € supp(p).
o (Supercritical region)If vo < —1 (1 +4/1+ 4Vo||z/1||W1,<x>), then there exists a

finite time T. such that

and v 2 =3 (WD) +/32(D) — Va[[d i )

inf Oxu(x,t) > —oc0 as t—T.—.
~eSUPP(p(-,1))
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Euler-Alignment system

Previous result

critical thresholds

segion of global smooth solutions.

A

25 segion of finite-time blow-ups

i 02 04 0.6 0.8 1.0 12 14 16 18 20
v,
Weakness:
@ The results are not sharp, in fact, o > Y *xp > o_.

@ The estimate of large-time behavior is essential, that is, if we can not obtain the
large-time behavior of solutions, there is nothing we can do.
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New idea of the proof

C.-Choi-Tadmor-Tan (M3AS, 2016):

O+ ude)y = 2 —(Wxp)v 40« (pu) — udi( % p).

Bad Good Not that bad

It follows from the symmetry of the influence function ) that
O * (pu) = = * Orp.
This yields that

(O + ud)v +0i(¥ % p) + udi(h * p) :Qﬁ — (Y% p)v,

Not that bad Bad Good

and
vty xp) =—v(v+¢+p),
where ’ denotes the time derivative along the characteristic flow.
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Euler-Alignment system

We now set d := v + ¢ x p. Then we find

/

p = —pld—1vx*p),
d = —d(d —*p).

Proposition:
@ Ifdy < 0,d — —oc in finite time.
@ Ifdy=0,d(r) =0forallt > 0.

@ Ifdy > 0,d(t) > ¢ xpast — oco.
+
—_—

«—0 lIJ*D\(— d

Figure: d vs d’'
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Euler-Alignment system

Theorem

Consider the Euler-Alignment system.
o (Subcritical region) If Ocuo(x) > —1p * po(x) for all x € R, the system has a global
classical solution, namely,

(pou) € C(RY ;L= (R)) x C(RF; W' (R)),

o (Supercritical region) If there exists an x such that Oyuo (x) < =Y *po (x) the
solution blows up in a finite time.

Strength:
@ Complete description of critical thresholds; No gap between two thresholds.

@ Compactly supported initial density is not required, and furthermore, we do not
need to have the estimate of large-time behavior of solutions.
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Euler-Alignment system

Numerical illustration by Lagrangian Methods'

LVOLUTION OF 1L DENSITY EVOLLITON OF THE DENSITY
N-G60, 0.0, k-0, - 0 H-E0, p-0.5 k- O, a- 0
= B 1 1
L | :
5
&
| — =
3
; - — : _ : -
L fsie o B LLLE 5 r B
1 o IR I Al wilinn |
LEVOLLIITON OF WIELUCITY ENULLUTTIUN OF YELLTLY
Ty, ' ' B T e
7 H }
> | ey - =

ER R EN]

1C.-Choi-Pérez, book chapter edited by Bellomo, Degond & Tadmor
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Euler-Alignment-Poisson system

Consider Euler-Alignment-Poisson system:
Ap + Ox(pu) =0,
O+ b = k0t + [ (= 3){uly.) = s}y,
%o =p.

e k > 0; attractive, k < 0; repulsive
Similarly, we find

p = —pd—1*p),
d' = —d(d —*p) + kp.

Set 5 = d/p, then we obtain

B'=—k, e, B(t)=po— ke
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Euler-Alignment-Poisson system

Attractive Poisson forcing(k > 0)

Using the estimate of /3, we get
p'=—p(d—1pxp) =—p(p(Bo — kt) — 1 x p) = —Bop” + ktp® + p(t x p).

Then we obtain the explicit form of solution p:

1 ! s
p () = e~ o(¥re)ds (pal +/ (Bo — ks)efow*p)des) .
0

For the attractive case k > 0, By — ks becomes negative in finite time, irrespective of
the value of So.

If k > 0, p(t) = o0 in finite time.

o In the attractive case, the blowup is “unconditional", independent of the choice of
initial configurations. This indicates that Poisson force dominates the alignment
force.
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Euler-Alignment-Poisson system

Repulsive Poisson forcing k < 0

Notice that if 5y > 0, then we can easily find that p(¢) remains bounded for all r > 0
due to 8 > 0. It exactly gives us the same subcritical region with the one of
Euler-Alignment system.

Consider the case when 3y < 0. Since 5o — ks < 0 for s < Bo/k, we obtain

p~ (1) =pg! +/ A (Bo — ks)e/“(w*p)‘”ds+/ﬂ (Bo — ks)elo (4*P)T g
0 Bo

k

Negative Positive

Bo

s e
p(-,1) remains bounded <= p;' + / (Bo — ks)elo (PP 4 > 0.
0
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Repulsive Poisson forcing k < 0

Theorem

® (Subcritical region) If Owuo(x) > —1 % po(x) + o4 (x) for all x € R, then the
system has a global classical solution. Here, o4 (x) = 0 whenever po(x) =0
and elsewhere o (x) is the (unique) negative root of the equation

€

pgl(x) - — (k + oy (x)/po(x) — kewM0+(x)/kpo(x)) -0
Uiy

@ (Supercritical region) If there exists an x such that

Dutto(x) < —tp % po(x) + - (1), 7—(x) = —/~Zkpo ),

then the solution blows up in a finite time.
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Euler-Alignment-Poisson system

Repulsive Poisson forcing k < 0

G.R.

v v

=1
=

E.B. 0 .
-—

Figure: Euler-Alignment system vs Euler-Alignment-Poisson system

e The repulsive force enhances regularity. Indeed, we have a larger subcritical region

than the case of K = 0.
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Numerical illustration by Lagrangian Methods?

EVOLITTION OF THE DENSITY EVOLLITTON OF “THIC ENENSETY

NS pib b -ln 0 Wb, posk -le
0.8 T T T I T T
- 0
% 4 i 2t
‘ '\ n
% e |l; ' aF' -
n ‘ll “\ 5
1
L L L - _— —f
i 19K~ 3 ; l.l " 3 1 1 TIME [ (%} ) il " ih 1
W X [position] W ¥ postion
LVOLUTION QI ¥ ELOCITY FEVOLITION OF VELOCITY
1 ' T
- , Dl H
i:i i \\ TH i ‘q,.\l_
< I > .
5 ] 5 [t h " b
x |posibian] X |posize]

2C.-Choi-Pérez, book chapter edited by Bellomo, Degond & Tadmor
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Repulsive Newtonian with Quadractic confinement
O@0000
Main equations

Main equations

Euler equations with Newtonian repulsion and quadratic confinement:
Op+ 0i(pu) =0, xeR, >0,
Oi(pu) + Ou(pu®) = —pu — pd.K * p,

where —|x| + % 3

3see also S. Engelberg, H. Liu and E. Tadmor (Indiana Univ. Math. J. 2001) for critical
thresholds.
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Main equations

Euler equations with Newtonian repulsion and quadratic confinement:
Op+ Ok(pu) =0, xeR, >0,
Oi(pu) + Ou(pu®) = —pu — pd.K * p,
where —|x| + % 3
Initial data: density compactly supported in Qo := Q(0) = (ao, bo) with
(p(t, ), u(t,-))li=0 = (po,u0) € H () x H (),

The initial mass and momentum are:

0 < Mo ::/ po(x)dx and M, ::/ po(x)uo(x) dx .
Qq Qq

3see also S. Engelberg, H. Liu and E. Tadmor (Indiana Univ. Math. J. 2001) for critical
thresholds.
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Main equations

Euler equations with Newtonian repulsion and quadratic confinement:
Op+ 0i(pu) =0, xeR, >0,
Oi(pu) + Ou(pu®) = —pu — pd.K * p,

where —|x| + % 3

Initial data: density compactly supported in Qo := Q(0) = (ao, bo) with
(p(t7 ')a M(l, '))'f:() = (pov MO) € HZ(QO) X H3(QO)7

The initial mass and momentum are:

0 < Mo ::/ po(x)dx and M, ::/ po(x)uo(x) dx .
Qq Qq

Lagrangian solutions: f(z,x) := p(r,n(7,x)) and v(z, x) := u(r,n(,x)) with

dn(t,x .
% = u(t,n(1,x)) with 5(0,x) =x€ Q.
3see also S. Engelberg, H. Liu and E. Tadmor (Indiana Univ. Math. J. 2001) for critical

thresholds.
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Main equations

Stationary States & Numerical Simulation

poo(x):M7 and  Ueo(x) =0 for x€ Qe :=T-1,T'+1)

with _ _

. MLO ( /F xpo(x) dx + /P po(x)uto (x) dx) .

02 - N
s o7

0.15| =5 03

o1 - o8 02

05| . o o1
z L e, z z
R e—— 7 E o
2 £ g

I S . o1

o1 2

15 o




Repulsive Newtonian with Quadractic confinement
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Main equations

Numerical illustration by Lagrangian Methods*

N=200, Mo=0.2, c=0.0 N=200, c=0.4
EWOLITTION OF TIE DENSITY EVOLUTION OF THE DENSITY
i N T T ] 04 T T T
0.3- b
o2 kS
W g Od- K
g =
5 onl- . E -
g . .k ] ] 1 —“—‘- i JHES (W il {10 na 1Ll I3
‘ll;l_ - x [ position) ”“: = x |prsition)
TVOLITION OF YRLOCTTY FVOLIITION OF VELOCITY
03T T T T 4 T T T
‘ -
= H
i =
E } - >

(i ] 1R 1 AT 1 R I AT I 14
x| pasition) % |posttien)

4C.-Choi-Pérez, book chapter edited by Bellomo, Degond & Tadmor









Repulsive Newtonian with Quadractic confinement
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Main Result’

Blow-up versus global existence

Assume that (f, v) is a classical solution to the hydrodynamic system, then:
Case A: If 1 — 4M, > 0, the solution blows up in finite time if and only if there
exists ax™ € Qo such that

Ouup(x™) <0, Mo —2po(x™) < AiOxuo(x™),
and
200(6") < (Miutio (") = Mo+ 200 (")) 2/YZ (NaButo (x") = Mo + 200 (")) V.
Case B: If 1 — 4M, = 0, the solution blows up in finite time if and only if there

exists a x* € Qp such that

Brtto(x*) < min {0’ 4po(x") — %} 7

and 8po(x*) 20,uo(x™)

1 .
o8 (Spo(x*) — 20kuo(x*) — 1) ~ 8po(x*) — 20xuo(x*) — 1
Case C: If | — 4M, < 0: more complicated conditions but an if and only if.

5C.-Choi-Zatorska, M3AS 2016
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Main equations

Main Result®

Asymptotic Behavior

Moreover, for all cases, if there is no finite-time blow-up, then the classical solution
(f,v) exists globally in time and it satisfies

Soo(x) := lim f(t,x) = A% and  veo(x) := lim v(r,x) =0 forall x € Qo,

t— 00 t—00

exponentially fast. Moreover, the characteristic flow satisfies

Moo (x) := lim n(t,x) = A%O (/ ypo(y) dy + /S po(y) uo(y) dy + 2/ :po(y) dy — Mo

fmree Qo 20
for all x € Qo. In particular, 2(7) = (a(t), b(z)) and
lim |a(f) =T+ 1]=0 and lim |b(r)—T —1|=0,
11— o0 1— 00

exponentially fast. As a consequence, there exists C > 0 depending on the L*°
bounds of po and O.up in 2o and A > 0 depending on the initial mass My such that

-
Hp(tv') _/)oc(')HLl(R) < Ce "
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Repulsive Newtonian with Quadractic confinement
[e] Je}
Proof

Main Ideas

@ Using the characteristic flow, it is easy to check that (p, u) is a local-in-time
classical solution of the pressure-less Euler-type system if and only if (f,v) is a
classical solution of the system

71,0 2 = ),

Ow(t,x) +v(t,x) = — [ W (n(t,x) — y)p(t,y)dy
Q(r)

=— [ Wn(x)—nty)p(y) dy,

Q

for (t,x) € (0,00) x o, where we used the conservation of mass.



Repulsive Newtonian with Quadractic confinement
[e] Je}
Proof

Main Ideas

@ Using the characteristic flow, it is easy to check that (p, u) is a local-in-time
classical solution of the pressure-less Euler-type system if and only if (f,v) is a
classical solution of the system

71,0 2 = ),

Ow(t,x) +v(t,x) = — [ W (n(t,x) — y)p(t,y)dy
Q(r)

=— [ Wn(x)—nty)p(y) dy,

Q

for (t,x) € (0,00) x o, where we used the conservation of mass.

@ Taking a further 7-derivative on the second equation, we deduce

Fv(t,x) + 0(t,x) = — [ O*W(n(t,x) = n(1,5)) (v(t,x) = v(1,)) po(y) dy

Qp

= —vMy + / v(t,y)po(y) dy-
Qo



Repulsive Newtonian with Quadractic confinement
felel }
Proof

Main Ideas

@ Evolution of the first moment:

‘/(.20 V(L 0)po(x) dv = e / " po(x)uo(x) .

7

This leads to an explicit second order ODE for the velocity field over
characteristics: 92v + 9 + Mov = Mye~" for ¢ > 0.



Repulsive Newtonian with Quadractic confinement
[e]e] ]
Proof

Main Ideas

@ Evolution of the first moment:

/ v(t,x)po(x) dx = e / po(X)uo(x) dx.

J oy Jay

This leads to an explicit second order ODE for the velocity field over
characteristics: 92v + 9 + Mov = Mye~" for ¢ > 0.

@ Solving explicitly the ODE for v leads to explicit formulas for both 1 and 9,7.
Blow-up happens if and only if there exists 7. > 0 and x. € o such that
On(ts,x) = 0. The first theorem is proved after careful study of the different
cases for the ODE.



Repulsive Newtonian with Quadractic confinement
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Proof

Main Ideas

@ Evolution of the first moment:
/ v(t,x)po(x) dx = e / po(X)uo(x) dx.
Joy J oy

This leads to an explicit second order ODE for the velocity field over
characteristics: 92v + 9 + Mov = Mye~" for ¢ > 0.

@ Solving explicitly the ODE for v leads to explicit formulas for both 1 and 9,7.
Blow-up happens if and only if there exists 7. > 0 and x. € o such that
On(ts,x) = 0. The first theorem is proved after careful study of the different
cases for the ODE.

@ The second theorem is shown by carefully estimating the difference between
the solution and an intermediate profile given by

f R.
p(t,y) = |52( )|X§7(/)(v) ory €
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Conclusions & Open Problems

@ Simple modelling of the three main mechanisms leads to complicated patterns.
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