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Collective Behavior Models

Individual Based Models (Particle models)
Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.
Highly developed social organization: insects (locusts, ants, bees ...), fish, birds,
micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individualsa

aAoki, Helmerijk et al., Barbaro, Birnir et al.

Repulsion Region: Rk.

Attraction Region: Ak.

Orientation Region: Ok.
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Collective Behavior Models

2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
dxi

dt
= vi,

m
dvi

dt
= (α− β |vi|2)vi −

∑
j 6=i

∇K(xi − xj).

Model assumptions:

Self-propulsion and friction terms
determines an asymptotic speed of√
α/β.

Attraction/Repulsion modeled by an
effective pairwise potential K(x) = k(r).

k(r) = −CAe−r/`A + CRe−r/`R .

One can also use Bessel functions in 2D
and 3D to produce such a potential.

C = CR/CA > 1, ` = `R/`A < 1 and
C`2 < 1:
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Collective Behavior Models

Velocity consensus model
Cucker-Smale Model (IEEE Automatic Control 2007):

dxi

dt
= vi,

dvi

dt
=

N∑
j=1

ψij (vj − vi) ,

with the communication rate, γ ≥ 0:

ψij = ψ(|xi − xj|) =
1

(1 + |xi − xj|2)γ
.

Typical patterns: milling, double milling or flocking:
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From micro to macro: PDE models
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From micro to macro: PDE models

Convergence of the particle method

Empirical measures: if xi, vi : [0, T)→ Rd, for i = 1, . . . ,N, is a solution to the
ODE system,

dxi

dt
= vi,

dvi

dt
=

propulsion-friction︷ ︸︸ ︷
(α− β |vi|2)vi −

attraction-repulsion︷ ︸︸ ︷∑
j6=i

mj∇K(xi − xj) +

orientation︷ ︸︸ ︷
N∑

j=1

mjaij (vj − vi) .

then the fN : [0, T)→ P1(Rd) given by

fN(t) :=
N∑

i=1

miδ(xi(t),vi(t)) with
N∑

i=1

mi = 1 ,

is expected to be the solution corresponding to initial atomic measures.
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From micro to macro: PDE models

Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

∂f
∂t

+ v · ∇xf + divv[(α− β|v|2)v f ]− divv [(∇xK ? ρ)f ] = 0.

Velocity consensus Model:

∂f
∂t

+ v · ∇xf = ∇v ·
[(∫

R2d

v− w
(1 + |x− y|2)γ f (y,w, t) dy dw

)
︸ ︷︷ ︸

:=ξ(f )(x,v,t)

f (x, v, t)
]

Orientation, Attraction and Repulsion:

∂f
∂t

+ v · ∇xf − divv [(∇xK ? ρ)f ] = ∇v · [ξ(f )(x, v, t)f (x, v, t)] .
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Qualitative Properties & Hydrodynamics

Macroscopic equations
Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time,
f (x, v, t) = ρ(x, t) δ(v− u(x, t)) is a distributional solution if and only if,

∂ρ

∂t
+ divx(ρu) = 0,

ρ
∂u
∂t

+ ρ (u·∇x)u = ρ (α− β|u|2)u− ρ (∇xK ? ρ).
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Main equations

Main equations

Euler equations with nonlocal forces(alignment-attractive/repulsive forces):

∂tρ+ ∂x(ρu) = 0, x ∈ R, t ≥ 0,

∂tu + u∂xu =

∫
R
ψ(x− y)(u(y)− u(x))ρ(y) dy− ∂xK ? ρ,

Basic assumptions:

ρ is a probability density function, i.e., ‖ρ(·, t)‖L1 = 1.

The influence function ψ ∈ W1,∞(R) is symmetry and uniformly bounded:

0 ≤ ψm ≤ ψ(x) = ψ(−x) ≤ ψM.



icreauab

Modelling & Levels of Description Critical thresholds Repulsive Newtonian with Quadractic confinement Conclusions

Euler-Alignment system
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Euler-Alignment system

Euler-Alignment system

We consider the Euler-Alignment system:

∂tρ+ ∂x(ρu) = 0, x ∈ R, t ≥ 0,

∂tu + u∂xu =

∫
R
ψ(x− y)(u(y)− u(x))ρ(y) dy.

Idea of the proof: Differentiate the velocity equation with respect to x to get

(∂t + u∂x)v = −v2 − (ψ ? ρ)v + ∂xψ ? (ρu)− u∂x(ψ ? ρ),

where v = ∂xu.

Goal: Classify the initial configurations that leading to global regularity or finite time
blow-up of solutions:

- If v0 > σ+, v(t) exists for all time.

- If v0 < σ−, v(t)→ −∞ in finite time.
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Euler-Alignment system

Previous result

Tadmor-Tan(Proc. Royal Soc. A, 2014):

(∂t + u∂x)v = −v2︸︷︷︸
Bad

−(ψ ? ρ)v︸ ︷︷ ︸
Good

+∂xψ ? (ρu)− u∂x(ψ ? ρ)︸ ︷︷ ︸
Bad

.

Main idea: Compact support of the density ρ & Large-time behaviour

S(t) := sup
x,y∈supp(ρ(t))

|x− y| ≤ D <∞,

V(t) := sup
x,y∈supp(ρ(t))

|u(x, t)− u(y, t)| → 0 as t→∞,

exponentially fast.
We now know how to hand the “Good" and “Bad" terms.

ψ ? ρ ≥ ψ(D) > 0

‖∂xψ ? (ρu)− u∂x(ψ ? ρ)‖L∞ . e−Ct
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Euler-Alignment system

Previous result

Set
v0 := inf

x∈supp(ρ0)
∂xu0(x) and V0 := sup

x,y∈supp(ρ0)

|u0(x)− u0(y)|.

Theorem (Tadmor-Tan, 2014)

• (Subcritical region)If the initial configurations satisfy

V0 ≤
ψ2(D)m

4‖ψ‖Ẇ1,∞
and v0 ≥ −

1
2

(
ψ(D) +

√
ψ2(D)− 4V0‖ψ‖Ẇ1,∞

)
,

then ∂xu(x, t) remains uniformly bounded for all (x, t) ∈ supp(ρ).

• (Supercritical region)If v0 < − 1
2

(
1 +

√
1 + 4V0‖ψ‖Ẇ1,∞

)
, then there exists a

finite time Tc such that

inf
x∈supp(ρ(·,t))

∂xu(x, t)→ −∞ as t→ Tc − .
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Euler-Alignment system

Previous result

Weakness:

The results are not sharp, in fact, σ+ ≥ ψ ? ρ ≥ σ−.

The estimate of large-time behavior is essential, that is, if we can not obtain the
large-time behavior of solutions, there is nothing we can do.
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Euler-Alignment system

New idea of the proof

C.-Choi-Tadmor-Tan (M3AS, 2016):

(∂t + u∂x)v = −v2︸︷︷︸
Bad

−(ψ ? ρ)v︸ ︷︷ ︸
Good

+∂xψ ? (ρu)− u∂x(ψ ? ρ)︸ ︷︷ ︸
Not that bad

.

It follows from the symmetry of the influence function ψ that

∂xψ ? (ρu) = −ψ ? ∂tρ.

This yields that

(∂t + u∂x)v +∂t(ψ ? ρ) + u∂x(ψ ? ρ)︸ ︷︷ ︸
Not that bad

= −v2︸︷︷︸
Bad

−(ψ ? ρ)v︸ ︷︷ ︸
Good

,

and
(v + ψ ? ρ)′ = −v(v + ψ ? ρ),

where ′ denotes the time derivative along the characteristic flow.
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Euler-Alignment system

We now set d := v + ψ ? ρ. Then we find

ρ′ = −ρ(d − ψ ? ρ),

d′ = −d(d − ψ ? ρ).

Proposition:

If d0 < 0, d → −∞ in finite time.

If d0 = 0, d(t) = 0 for all t ≥ 0.

If d0 > 0, d(t)→ ψ ? ρ as t→∞.

Figure: d vs d′
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Euler-Alignment system

Theorem

Consider the Euler-Alignment system.
• (Subcritical region) If ∂xu0(x) ≥ −ψ ? ρ0(x) for all x ∈ R, the system has a global
classical solution, namely,

(ρ, u) ∈ C(R+; L∞(R))× C(R+; Ẇ1,∞(R)).

• (Supercritical region) If there exists an x such that ∂xu0(x) < −ψ ? ρ0(x), the
solution blows up in a finite time.

Strength:

Complete description of critical thresholds; No gap between two thresholds.

Compactly supported initial density is not required, and furthermore, we do not
need to have the estimate of large-time behavior of solutions.
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Euler-Alignment system

Numerical illustration by Lagrangian Methods1

1C.-Choi-Pérez, book chapter edited by Bellomo, Degond & Tadmor
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Euler-Alignment-Poisson system

Euler-Alignment-Poisson system

Consider Euler-Alignment-Poisson system:

∂tρ+ ∂x(ρu) = 0,

∂tu + u∂xu = −k∂xφ+

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy,

∂2
xφ = ρ.

• k > 0; attractive, k < 0; repulsive
Similarly, we find

ρ′ = −ρ(d − ψ ? ρ),

d′ = −d(d − ψ ? ρ) + kρ.

Set β = d/ρ, then we obtain

β′ = −k, i.e., β(t) = β0 − kt.
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Euler-Alignment-Poisson system

Attractive Poisson forcing(k > 0)

Using the estimate of β, we get

ρ′ = −ρ(d − ψ ? ρ) = −ρ(ρ(β0 − kt)− ψ ? ρ) = −β0ρ
2 + ktρ2 + ρ(ψ ? ρ).

Then we obtain the explicit form of solution ρ:

ρ−1(t) = e−
∫ t

0(ψ?ρ)ds
(
ρ−1

0 +

∫ t

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds

)
.

For the attractive case k > 0, β0 − ks becomes negative in finite time, irrespective of
the value of β0.

If k > 0, ρ(t)→ +∞ in finite time.

• In the attractive case, the blowup is “unconditional", independent of the choice of
initial configurations. This indicates that Poisson force dominates the alignment
force.
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Euler-Alignment-Poisson system

Repulsive Poisson forcing k < 0

Notice that if β0 ≥ 0, then we can easily find that ρ(t) remains bounded for all t ≥ 0
due to β ≥ 0. It exactly gives us the same subcritical region with the one of
Euler-Alignment system.

Consider the case when β0 < 0. Since β0 − ks < 0 for s ≤ β0/k, we obtain

ρ−1(t) = ρ−1
0 +

∫ β0
k

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds︸ ︷︷ ︸

Negative

+

∫ t

β0
k

(β0 − ks)e
∫ s

0 (ψ?ρ)dτds︸ ︷︷ ︸
Positive

ρ(·, t) remains bounded ⇐⇒ ρ−1
0 +

∫ β0
k

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds > 0.
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Euler-Alignment-Poisson system

Repulsive Poisson forcing k < 0

Theorem

(Subcritical region) If ∂xu0(x) > −ψ ? ρ0(x) + σ+(x) for all x ∈ R, then the
system has a global classical solution. Here, σ+(x) = 0 whenever ρ0(x) = 0
and elsewhere σ+(x) is the (unique) negative root of the equation

ρ−1
0 (x)− 1

ψ2
M

(
k + ψMσ+(x)/ρ0(x)− keψMσ+(x)/kρ0(x)

)
= 0.

(Supercritical region) If there exists an x such that

∂xu0(x) < −ψ ? ρ0(x) + σ−(x), σ−(x) := −
√
−2kρ0(x),

then the solution blows up in a finite time.
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Euler-Alignment-Poisson system

Repulsive Poisson forcing k < 0

Figure: Euler-Alignment system vs Euler-Alignment-Poisson system

• The repulsive force enhances regularity. Indeed, we have a larger subcritical region
than the case of K ≡ 0.
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Euler-Alignment-Poisson system

Numerical illustration by Lagrangian Methods2

2C.-Choi-Pérez, book chapter edited by Bellomo, Degond & Tadmor
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Main equations

Main equations
Euler equations with Newtonian repulsion and quadratic confinement:

∂tρ+ ∂x(ρu) = 0, x ∈ R, t ≥ 0,

∂t(ρu) + ∂x(ρu2) = −ρu− ρ∂xK ? ρ,

where −|x|+ x2

2 . 3

Initial data: density compactly supported in Ω0 := Ω(0) = (a0, b0) with

(ρ(t, ·), u(t, ·))|t=0 = (ρ0, u0) ∈ H2(Ω0)× H3(Ω0),

The initial mass and momentum are:

0 < M0 :=

∫
Ω0

ρ0(x)dx and M1 :=

∫
Ω0

ρ0(x)u0(x) dx .

Lagrangian solutions: f (t, x) := ρ(t, η(t, x)) and v(t, x) := u(t, η(t, x)) with

dη(t, x)

dt
= u(t, η(t, x)) with η(0, x) = x ∈ Ω0 .

3see also S. Engelberg, H. Liu and E. Tadmor (Indiana Univ. Math. J. 2001) for critical
thresholds.



icreauab

Modelling & Levels of Description Critical thresholds Repulsive Newtonian with Quadractic confinement Conclusions

Main equations

Main equations
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∂tρ+ ∂x(ρu) = 0, x ∈ R, t ≥ 0,

∂t(ρu) + ∂x(ρu2) = −ρu− ρ∂xK ? ρ,

where −|x|+ x2

2 . 3

Initial data: density compactly supported in Ω0 := Ω(0) = (a0, b0) with
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Main equations

Stationary States & Numerical Simulation

ρ∞(x) =
M0

2
and u∞(x) = 0 for x ∈ Ω∞ := (Γ− 1,Γ + 1)

with

Γ :=
1

M0

(∫
R

xρ0(x) dx +

∫
R
ρ0(x)u0(x) dx

)
.

(a) (b) (c) (d)
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Main equations

Numerical illustration by Lagrangian Methods4

4C.-Choi-Pérez, book chapter edited by Bellomo, Degond & Tadmor
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Main equations

Main Result5

Blow-up versus global existence

Assume that (f , v) is a classical solution to the hydrodynamic system, then:
Case A: If 1− 4M0 > 0, the solution blows up in finite time if and only if there
exists a x∗ ∈ Ω0 such that

∂xu0(x∗) < 0, M0 − 2ρ0(x∗) < λ1∂xu0(x∗),

and

2ρ0(x∗) ≤ (λ1∂xu0(x∗)−M0 + 2ρ0(x∗))−λ2/
√

Ξ(λ2∂xu0(x∗)−M0 + 2ρ0(x∗))λ1/
√

Ξ.

Case B: If 1− 4M0 = 0, the solution blows up in finite time if and only if there
exists a x∗ ∈ Ω0 such that

∂xu0(x∗) < min
{

0, 4ρ0(x∗)− 1
2

}
,

and
log
(

8ρ0(x∗)
8ρ0(x∗)− 2∂xu0(x∗)− 1

)
≤ 2∂xu0(x∗)

8ρ0(x∗)− 2∂xu0(x∗)− 1
.

Case C: If 1− 4M0 < 0: more complicated conditions but an if and only if.
5C.-Choi-Zatorska, M3AS 2016
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Main equations

Main Result6

Asymptotic Behavior

Moreover, for all cases, if there is no finite-time blow-up, then the classical solution
(f , v) exists globally in time and it satisfies

f∞(x) := lim
t→∞

f (t, x) =
M0

2
and v∞(x) := lim

t→∞
v(t, x) = 0 for all x ∈ Ω0,

exponentially fast. Moreover, the characteristic flow satisfies

η∞(x) := lim
t→∞

η(t, x) =
1

M0

(∫
Ω0

yρ0(y) dy +

∫
Ω0

ρ0(y) u0(y) dy + 2
∫ x

a0

ρ0(y) dy−M0

)
for all x ∈ Ω0. In particular, Ω(t) = (a(t), b(t)) and

lim
t→∞
|a(t)− Γ + 1| = 0 and lim

t→∞
|b(t)− Γ− 1| = 0 ,

exponentially fast. As a consequence, there exists C > 0 depending on the L∞

bounds of ρ0 and ∂xu0 in Ω0 and λ > 0 depending on the initial mass M0 such that

‖ρ(t, ·)− ρ∞(·)‖L1(R) ≤ Ce−λt .

6C.-Choi-Zatorska, M3AS 2016
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Proof

Main Ideas

Using the characteristic flow, it is easy to check that (ρ, u) is a local-in-time
classical solution of the pressure-less Euler-type system if and only if (f , v) is a
classical solution of the system

f (t, x)
∂η(t, x)

∂x
= ρ0(x),

∂tv(t, x) + v(t, x) = −
∫

Ω(t)
W′(η(t, x)− y)ρ(t, y)dy

= −
∫

Ω0

W′(η(t, x)− η(t, y))ρ0(y) dy,

for (t, x) ∈ (0,∞)× Ω0, where we used the conservation of mass.

Taking a further t-derivative on the second equation, we deduce

∂2
ttv(t, x) + ∂tv(t, x) = −

∫
Ω0

∂2W(η(t, x)− η(t, y)) (v(t, x)− v(t, y)) ρ0(y) dy

= −vM0 +

∫
Ω0

v(t, y)ρ0(y) dy.
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Proof

Main Ideas

Evolution of the first moment:∫
Ω0

v(t, x)ρ0(x) dx = e−t
∫

Ω0

ρ0(x)u0(x) dx.

This leads to an explicit second order ODE for the velocity field over
characteristics: ∂2

ttv + ∂tv + M0v = M1e−t for t > 0.

Solving explicitly the ODE for v leads to explicit formulas for both η and ∂xη.
Blow-up happens if and only if there exists t∗ > 0 and x∗ ∈ Ω0 such that
∂xη(t∗, x∗) = 0. The first theorem is proved after careful study of the different
cases for the ODE.

The second theorem is shown by carefully estimating the difference between
the solution and an intermediate profile given by

ρ̄(t, y) =
M0

|Ω(t)|χΩ(t)(y) for y ∈ R .
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Conclusions & Open Problems

Simple modelling of the three main mechanisms leads to complicated patterns.

Hydrodynamic Equations without pressure but with nonlocal terms can be at
least formally derived.

Critical thresholds in 1D are obtained for the Euler-type equations. Sharp
criteria for alignment but not with attractive-repulsive potentials.

Sharp Results for thresholds and asymptotic behavior for teh particular case of
Newtonian repulsive confined quadratically.

References:

1 C.-D’Orsogna-Panferov (KRM 2008).
2 C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
3 C.-Klar-Martin-Tiwari (M3AS 2010).
4 C.-Choi-Tadmor-Tan (M3AS 2016)
5 C.-Choi-Zatorska (M3AS 2016)
6 C.-Choi-Pérez (Book Chapter, Birkhäuser volume edited by Bellomo,

Degond & Tadmor)
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