Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Agent Models of 1st and 2nd order: from micro to macro

J. A. Carrillo

Imperial College London

Università di Verona, November 2018

Critical thresholds

Repulsive Newtonian with Quadractic confinement 000000000 Conclusions

Outline

1 Modelling & Levels of Description

- Collective Behavior Models
- From micro to macro: PDE models
- Qualitative Properties & Hydrodynamics

2 Critical thresholds

- Main equations
- Euler-Alignment system
- Euler-Alignment-Poisson system

Repulsive Newtonian with Quadractic confinement

- Main equations
- Proof

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Outline

Modelling & Levels of Description

• Collective Behavior Models

- From micro to macro: PDE models
- Qualitative Properties & Hydrodynamics

2 Critical thresholds

- Main equations
- Euler-Alignment system
- Euler-Alignment-Poisson system

Repulsive Newtonian with Quadractic confinement

- Main equations
- Proof

4 Conclusions

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Collective Behavior Models

Individual Based Models (Particle models)

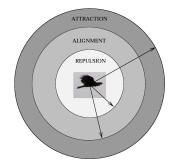
Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fish, birds, micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^aAoki, Helmerijk et al., Barbaro, Birnir et al.

- **Repulsion** Region: R_k .
- Attraction Region: A_k .
- Orientation Region: *O_k*.



Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Collective Behavior Models

Individual Based Models (Particle models)

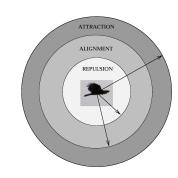
Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fish, birds, micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^aAoki, Helmerijk et al., Barbaro, Birnir et al.

- **Repulsion** Region: R_k .
- Attraction Region: A_k.
- Orientation Region: *O_k*.



Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusion

Collective Behavior Models

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla K(x_i - x_j). \end{cases}$$

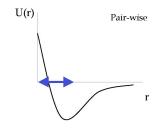
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential K(x) = k(r).

 $k(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Collective Behavior Models

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla K(x_i - x_i). \end{cases}$$

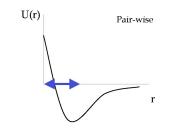
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential K(x) = k(r).

 $k(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Collective Behavior Models

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla K(x_i - x_j). \end{cases}$$

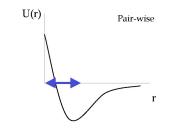
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential K(x) = k(r).

 $k(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Collective Behavior Models

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla K(x_i - x_j). \end{cases}$$

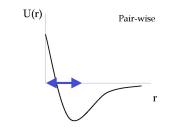
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential K(x) = k(r).

 $k(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

$$C = C_R/C_A > 1, \ell = \ell_R/\ell_A < 1$$
 and $C\ell^2 < 1$:



Critical thresholds

Repulsive Newtonian with Quadractic confinement 000000000 Conclusions

Collective Behavior Models

Velocity consensus model

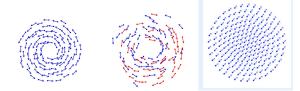
Cucker-Smale Model (IEEE Automatic Control 2007):

$$\begin{aligned} \frac{dx_i}{dt} &= v_i, \\ \frac{dv_i}{dt} &= \sum_{j=1}^N \psi_{ij} \left(v_j - v_i \right), \end{aligned}$$

with the communication rate, $\gamma \ge 0$:

$$\psi_{ij} = \psi(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Typical patterns: milling, double milling or flocking:



Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

From micro to macro: PDE models

Outline

1

Modelling & Levels of Description

• Collective Behavior Models

• From micro to macro: PDE models

• Qualitative Properties & Hydrodynamics

2 Critical thresholds

- Main equations
- Euler-Alignment system
- Euler-Alignment-Poisson system

Repulsive Newtonian with Quadractic confinement

- Main equations
- Proof

4 Conclusions

Critical thresholds

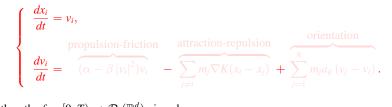
Repulsive Newtonian with Quadractic confinement

Conclusions

From micro to macro: PDE models

Convergence of the particle method

Empirical measures: if $x_i, v_i : [0, T) \to \mathbb{R}^d$, for i = 1, ..., N, is a solution to the ODE system,



then the $f_N : [0, T) \to \mathcal{P}_1(\mathbb{R}^d)$ given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$
 with $\sum_{i=1}^N m_i = 1$,

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

From micro to macro: PDE models

Convergence of the particle method

Empirical measures: if $x_i, v_i : [0, T) \to \mathbb{R}^d$, for i = 1, ..., N, is a solution to the ODE system,

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \overbrace{(\alpha - \beta |v_i|^2)v_i}^{\text{propulsion-friction}} - \overbrace{\sum_{j \neq i}^{\text{attraction-repulsion}}_{j \neq i} m_j \nabla K(x_i - x_j) + \sum_{j=1}^{N} m_j a_{ij} (v_j - v_i). \end{cases}$$

then the $f_N : [0, T) \to \mathcal{P}_1(\mathbb{R}^d)$ given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$
 with $\sum_{i=1}^N m_i = 1$,

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

From micro to macro: PDE models

Convergence of the particle method

Empirical measures: if $x_i, v_i : [0, T) \to \mathbb{R}^d$, for i = 1, ..., N, is a solution to the ODE system,

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ & \text{propulsion-friction} \\ \frac{dv_i}{dt} = \overbrace{(\alpha - \beta |v_i|^2)v_i}^{\text{propulsion-friction}} - \overbrace{\sum_{j \neq i}^{\text{attraction-repulsion}}_{j \neq i} m_j \nabla K(x_i - x_j)}^{\text{attraction-repulsion}} + \overbrace{\sum_{j=1}^{N} m_j a_{ij} (v_j - v_i)}^{\text{orientation}}. \end{cases}$$

then the $f_N : [0, T) \to \mathcal{P}_1(\mathbb{R}^d)$ given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$
 with $\sum_{i=1}^N m_i = 1$,

Critical thresholds

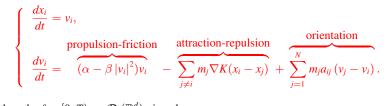
Repulsive Newtonian with Quadractic confinement

Conclusions

From micro to macro: PDE models

Convergence of the particle method

Empirical measures: if $x_i, v_i : [0, T) \to \mathbb{R}^d$, for i = 1, ..., N, is a solution to the ODE system,



then the $f_N: [0,T) \to \mathcal{P}_1(\mathbb{R}^d)$ given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$
 with $\sum_{i=1}^N m_i = 1$,

Modelling & Levels of Description			
000000000	000000000000000000000000000000000000000	00000000	
From micro to macro: PDE models			
Mesoscopic mo	odels		

Model with asymptotic velocity + Attraction/Repulsion:

$$rac{\partial f}{\partial t} + v \cdot
abla_x f + \operatorname{div}_{v}[(lpha - eta |v|^2)vf] - \operatorname{div}_{v}[(
abla_x K \star
ho)f] = 0.$$

Velocity consensus Model:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \nabla_v \cdot \left[\underbrace{\left(\int_{\mathbb{R}^{2d}} \frac{v - w}{(1 + |x - y|^2)^{\gamma}} f(y, w, t) \, dy \, dw \right)}_{:=\xi(f)(x, v, t)} f(x, v, t) \right]$$

Orientation, Attraction and Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \operatorname{div}_v \left[(\nabla_x K \star \rho) f \right] = \nabla_v \cdot \left[\xi(f)(x, v, t) f(x, v, t) \right].$$

Mesoscopic m	odels		
From micro to macro: PDE models			
000000000	000000000000000000	00000000	
Modelling & Levels of Description		Repulsive Newtonian with Quadractic confinement	

Model with asymptotic velocity + Attraction/Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + \operatorname{div}_{\nu}[(\alpha - \beta |\nu|^2)\nu f] - \operatorname{div}_{\nu}[(\nabla_x K \star \rho)f] = 0.$$

Velocity consensus Model:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \nabla_v \cdot \left[\underbrace{\left(\int_{\mathbb{R}^{2d}} \frac{v - w}{(1 + |x - y|^2)^{\gamma}} f(y, w, t) \, dy \, dw \right)}_{:=\xi(f)(x, v, t)} f(x, v, t) \right]$$

Orientation, Attraction and Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \operatorname{div}_v \left[(\nabla_x K \star \rho) f \right] = \nabla_v \cdot \left[\xi(f)(x, v, t) f(x, v, t) \right].$$

Mesoscopic m	odels		
From micro to macro: PDE models			
000000000	0000000000000000000	00000000	
Modelling & Levels of Description		Repulsive Newtonian with Quadractic confinement	

Model with asymptotic velocity + Attraction/Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + \operatorname{div}_{\nu}[(\alpha - \beta |\nu|^2)\nu f] - \operatorname{div}_{\nu}[(\nabla_x K \star \rho)f] = 0.$$

Velocity consensus Model:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \nabla_v \cdot \left[\underbrace{\left(\int_{\mathbb{R}^{2d}} \frac{v - w}{(1 + |x - y|^2)^{\gamma}} f(y, w, t) \, dy \, dw \right)}_{:=\xi(f)(x, v, t)} f(x, v, t) \right]$$

Orientation, Attraction and Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \operatorname{div}_v \left[(\nabla_x K \star \rho) f \right] = \nabla_v \cdot \left[\xi(f)(x, v, t) f(x, v, t) \right].$$

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Qualitative Properties & Hydrodynamics

Outline

1

Modelling & Levels of Description

- Collective Behavior Models
- From micro to macro: PDE models

• Qualitative Properties & Hydrodynamics

2 Critical thresholds

- Main equations
- Euler-Alignment system
- Euler-Alignment-Poisson system

Repulsive Newtonian with Quadractic confinement

- Main equations
- Proof

4 Conclusions

Critical thresholds

Repulsive Newtonian with Quadractic confinement

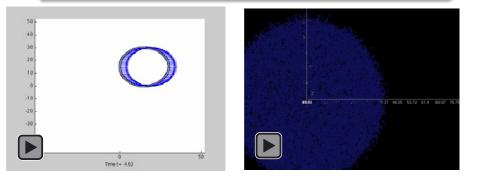
Conclusions

Qualitative Properties & Hydrodynamics

Macroscopic equations

Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time, $f(x, v, t) = \rho(x, t) \,\delta(v - u(x, t)) \text{ is a distributional solution if and only if,} \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}_x(\rho u) = 0, \\ \rho \,\frac{\partial u}{\partial t} + \rho \,(u \cdot \nabla_x)u = \rho \,(\alpha - \beta |u|^2)u - \rho \,(\nabla_x K \star \rho). \end{cases}$



Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Main equations

Outline

Modelling & Levels of Description

- Collective Behavior Models
- From micro to macro: PDE models
- Qualitative Properties & Hydrodynamics

2 Critical thresholds

Main equations

- Euler-Alignment system
- Euler-Alignment-Poisson system

Repulsive Newtonian with Quadractic confinement

- Main equations
- Proof

4 Conclusions

Modelling & Levels of Description	Critical thresholds ○●○○○○○○○○○○○○○○○○○	Repulsive Newtonian with Quadractic confinement	
Main equations			
Main equation	S		

Euler equations with nonlocal forces(alignment-attractive/repulsive forces):

$$\partial_t \rho + \partial_x (\rho u) = 0, \quad x \in \mathbb{R}, \quad t \ge 0,$$

$$\partial_t u + u \partial_x u = \int_{\mathbb{R}} \psi(x - y) (u(y) - u(x)) \rho(y) \, dy - \partial_x K \star \rho,$$

Basic assumptions:

- ρ is a probability density function, i.e., $\|\rho(\cdot, t)\|_{L^1} = 1$.
- The influence function $\psi \in W^{1,\infty}(\mathbb{R})$ is symmetry and uniformly bounded:

$$0 \leq \psi_m \leq \psi(x) = \psi(-x) \leq \psi_M.$$

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Euler-Alignment system

Outline

Modelling & Levels of Description

- Collective Behavior Models
- From micro to macro: PDE models
- Qualitative Properties & Hydrodynamics

Critical thresholds

- Main equations
- Euler-Alignment system
- Euler-Alignment-Poisson system

Repulsive Newtonian with Quadractic confinement

- Main equations
- Proof

4 Conclusions

Critical thresholds

Repulsive Newtonian with Quadractic confinement 000000000 Conclusions

Euler-Alignment system

Euler-Alignment system

We consider the Euler-Alignment system:

$$\partial_t \rho + \partial_x (\rho u) = 0, \quad x \in \mathbb{R}, \quad t \ge 0,$$

$$\partial_t u + u \partial_x u = \int_{\mathbb{R}} \psi(x - y) (u(y) - u(x)) \rho(y) \, dy.$$

Idea of the proof: Differentiate the velocity equation with respect to x to get

$$(\partial_t + u\partial_x)v = -v^2 - (\psi \star \rho)v + \partial_x\psi \star (\rho u) - u\partial_x(\psi \star \rho)$$

where $v = \partial_x u$.

Goal: Classify the initial configurations that leading to global regularity or finite time blow-up of solutions:

- If $v_0 > \sigma_+$, v(t) exists for all time.
- If $v_0 < \sigma_-, v(t) \to -\infty$ in finite time.

Modelling & Levels of Description	Critical thresholds	Repulsive Newtonian with Quadractic confinement	Conclusions
Euler-Alignment system			
Previous result	t		

Tadmor-Tan(Proc. Royal Soc. A, 2014):

$$(\partial_t + u\partial_x)v = \underbrace{-v^2}_{Bad} \underbrace{-(\psi \star \rho)v}_{Good} \underbrace{+\partial_x \psi \star (\rho u) - u\partial_x (\psi \star \rho)}_{Bad}$$

Main idea: Compact support of the density ρ & Large-time behaviour

$$S(t) := \sup_{\substack{x,y \in \text{supp}(\rho(t))}} |x - y| \le D < \infty,$$

$$V(t) := \sup_{\substack{x,y \in \text{supp}(\rho(t))}} |u(x,t) - u(y,t)| \to 0 \text{ as } t \to \infty,$$

exponentially fast.

We now know how to hand the "Good" and "Bad" terms.

- $\psi \star \rho \geq \psi(D) > 0$
- $\|\partial_x\psi\star(\rho u)-u\partial_x(\psi\star\rho)\|_{L^{\infty}} \lesssim e^{-Ct}$

Modelling & Levels of Description	Critical thresholds	Repulsive Newtonian with Quadractic confinement	
Euler-Alignment system			
Previous result	t		

Set

$$v_0 := \inf_{x \in \text{supp}(\rho_0)} \partial_x u_0(x) \text{ and } V_0 := \sup_{x,y \in \text{supp}(\rho_0)} |u_0(x) - u_0(y)|.$$

Theorem (Tadmor-Tan, 2014)

• (Subcritical region)If the initial configurations satisfy

$$V_0 \leq \frac{\psi^2(D)m}{4\|\psi\|_{\dot{W}^{1,\infty}}} \quad and \quad v_0 \geq -\frac{1}{2} \left(\psi(D) + \sqrt{\psi^2(D) - 4V_0}\|\psi\|_{\dot{W}^{1,\infty}}\right),$$

then $\partial_x u(x,t)$ remains uniformly bounded for all $(x,t) \in supp(\rho)$. • (Supercritical region) If $v_0 < -\frac{1}{2} \left(1 + \sqrt{1 + 4V_0 \|\psi\|_{\dot{W}^{1,\infty}}} \right)$, then there exists a finite time T_c such that

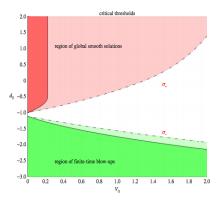
$$\inf_{x \in SUPP(\rho(\cdot,t))} \partial_x u(x,t) \to -\infty \quad as \quad t \to T_c - .$$

Critical thresholds

Repulsive Newtonian with Quadractic confinement 000000000 Conclusions

Euler-Alignment system

Previous result



Weakness:

- The results are not sharp, in fact, σ₊ ≥ ψ ★ ρ ≥ σ₋.
- The estimate of large-time behavior is essential, that is, if we can not obtain the large-time behavior of solutions, there is nothing we can do.

Critical thresholds

Repulsive Newtonian with Quadractic confinement 000000000 Conclusions

Euler-Alignment system

New idea of the proof

C.-Choi-Tadmor-Tan (M3AS, 2016):

$$(\partial_t + u\partial_x)v = \underbrace{-v^2}_{Bad} \underbrace{-(\psi \star \rho)v}_{Good} \underbrace{+\partial_x \psi \star (\rho u) - u\partial_x (\psi \star \rho)}_{Not that bad}$$

It follows from the symmetry of the influence function ψ that

$$\partial_x\psi\star(\rho u)=-\psi\star\partial_t\rho.$$

This yields that

$$(\partial_t + u\partial_x)v \underbrace{+\partial_t(\psi \star \rho) + u\partial_x(\psi \star \rho)}_{Not that bad} = \underbrace{-v^2}_{Bad} \underbrace{-(\psi \star \rho)v}_{Good},$$

and

$$(v + \psi \star \rho)' = -v(v + \psi \star \rho),$$

where ' denotes the time derivative along the characteristic flow.

Modelling & Levels of Description	Critical thresholds	Repulsive Newtonian with Quadractic confinement
	000000000000000000000000000000000000000	
Euler-Alignment system		

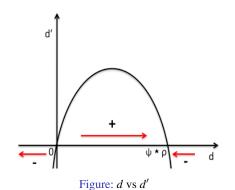
We now set $d := v + \psi \star \rho$. Then we find

$$\rho' = -\rho(d - \psi \star \rho),$$

$$d' = -d(d - \psi \star \rho).$$

Proposition:

- If $d_0 < 0, d \rightarrow -\infty$ in finite time.
- If $d_0 = 0$, d(t) = 0 for all $t \ge 0$.
- If $d_0 > 0$, $d(t) \rightarrow \psi \star \rho$ as $t \rightarrow \infty$.



Modelling & Levels of Description	Critical thresholds	Repulsive Newtonian with Quadractic confinement	
	000000000000000000000000000000000000000		
Euler-Alignment system			

Theorem

Consider the Euler-Alignment system.

• (Subcritical region) If $\partial_x u_0(x) \ge -\psi \star \rho_0(x)$ for all $x \in \mathbb{R}$, the system has a global classical solution, namely,

 $(\rho, u) \in \mathcal{C}(\mathbb{R}^+; L^{\infty}(\mathbb{R})) \times \mathcal{C}(\mathbb{R}^+; \dot{W}^{1,\infty}(\mathbb{R})).$

• (Supercritical region) If there exists an x such that $\partial_x u_0(x) < -\psi \star \rho_0(x)$, the solution blows up in a finite time.

Strength:

- Complete description of critical thresholds; No gap between two thresholds.
- Compactly supported initial density is not required, and furthermore, we do not need to have the estimate of large-time behavior of solutions.

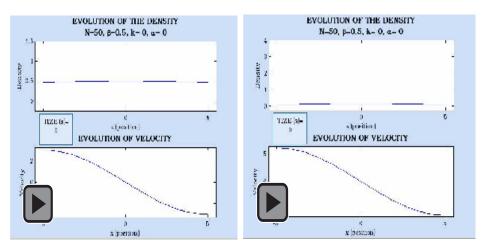
Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Euler-Alignment system

Numerical illustration by Lagrangian Methods¹



¹C.-Choi-Pérez, book chapter edited by Bellomo, Degond & Tadmor

Critical thresholds

Repulsive Newtonian with Quadractic confinemen 000000000 Conclusions

Euler-Alignment-Poisson system

Outline

Modelling & Levels of Description

- Collective Behavior Models
- From micro to macro: PDE models
- Qualitative Properties & Hydrodynamics

Critical thresholds

- Main equations
- Euler-Alignment system
- Euler-Alignment-Poisson system

Repulsive Newtonian with Quadractic confinement

- Main equations
- Proof

4 Conclusions

Critical thresholds

Repulsive Newtonian with Quadractic confinement 000000000 Conclusions

Euler-Alignment-Poisson system

Euler-Alignment-Poisson system

Consider Euler-Alignment-Poisson system:

$$\begin{aligned} \partial_t \rho + \partial_x (\rho u) &= 0, \\ \partial_t u + u \partial_x u &= -k \partial_x \phi + \int_{\mathbb{R}} \psi(x - y) (u(y, t) - u(x, t)) \rho(y, t) dy, \\ \partial_x^2 \phi &= \rho. \end{aligned}$$

• *k* > 0; attractive, *k* < 0; repulsive Similarly, we find

$$\begin{aligned} \rho' &= -\rho(d - \psi \star \rho), \\ d' &= -d(d - \psi \star \rho) + k\rho. \end{aligned}$$

Set $\beta = d/\rho$, then we obtain

$$\beta' = -k$$
, i.e., $\beta(t) = \beta_0 - kt$.

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Euler-Alignment-Poisson system

Attractive Poisson forcing(k > 0)

Using the estimate of β , we get

$$\rho' = -\rho(d - \psi \star \rho) = -\rho(\rho(\beta_0 - kt) - \psi \star \rho) = -\beta_0 \rho^2 + kt\rho^2 + \rho(\psi \star \rho).$$

Then we obtain the explicit form of solution ρ :

$$\rho^{-1}(t) = e^{-\int_0^t (\psi \star \rho) ds} \left(\rho_0^{-1} + \int_0^t (\beta_0 - ks) e^{\int_0^s (\psi \star \rho) d\tau} ds \right).$$

For the attractive case k > 0, $\beta_0 - ks$ becomes negative in finite time, irrespective of the value of β_0 .

If k > 0, $\rho(t) \to +\infty$ in finite time.

• In the attractive case, the blowup is "unconditional", independent of the choice of initial configurations. This indicates that Poisson force dominates the alignment force.

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Euler-Alignment-Poisson system

Repulsive Poisson forcing k < 0

Notice that if $\beta_0 \ge 0$, then we can easily find that $\rho(t)$ remains bounded for all $t \ge 0$ due to $\beta \ge 0$. It exactly gives us the same subcritical region with the one of Euler-Alignment system.

Consider the case when $\beta_0 < 0$. Since $\beta_0 - ks < 0$ for $s \le \beta_0/k$, we obtain

$$\rho^{-1}(t) = \rho_0^{-1} + \underbrace{\int_0^{\frac{\beta_0}{k}} (\beta_0 - ks) e^{\int_0^s (\psi \star \rho) d\tau} ds}_{Negative} + \underbrace{\int_{\frac{\beta_0}{k}}^t (\beta_0 - ks) e^{\int_0^s (\psi \star \rho) d\tau} ds}_{Positive}$$

$$\rho(\cdot, t) \text{ remains bounded} \quad \Longleftrightarrow \quad \rho_0^{-1} + \int_0^{\frac{\beta_0}{k}} (\beta_0 - ks) e^{\int_0^s (\psi \star \rho) d\tau} ds > 0.$$

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Euler-Alignment-Poisson system

Repulsive Poisson forcing k < 0

Theorem

(Subcritical region) If ∂_xu₀(x) > -ψ ★ ρ₀(x) + σ₊(x) for all x ∈ ℝ, then the system has a global classical solution. Here, σ₊(x) = 0 whenever ρ₀(x) = 0 and elsewhere σ₊(x) is the (unique) negative root of the equation

$$\rho_0^{-1}(x) - \frac{1}{\psi_M^2} \left(k + \psi_M \sigma_+(x) / \rho_0(x) - k e^{\psi_M \sigma_+(x) / k \rho_0(x)} \right) = 0.$$

• (Supercritical region) If there exists an x such that

$$\partial_x u_0(x) < -\psi \star \rho_0(x) + \sigma_-(x), \quad \sigma_-(x) := -\sqrt{-2k\rho_0(x)},$$

then the solution blows up in a finite time.

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Modelling & Levels of Description 000000000 Euler-Alignment-Poisson system

Repulsive Poisson forcing k < 0

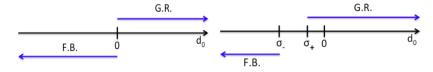


Figure: Euler-Alignment system vs Euler-Alignment-Poisson system

• The repulsive force enhances regularity. Indeed, we have a larger subcritical region than the case of $K \equiv 0$.

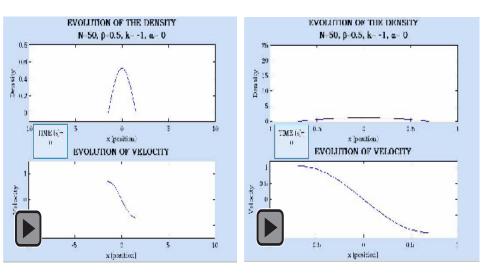
Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Euler-Alignment-Poisson system

Numerical illustration by Lagrangian Methods²



²C.-Choi-Pérez, book chapter edited by Bellomo, Degond & Tadmor

Critical thresholds

Repulsive Newtonian with Quadractic confinement ••••••• Conclusions

Main equations

Outline

Modelling & Levels of Description

- Collective Behavior Models
- From micro to macro: PDE models
- Qualitative Properties & Hydrodynamics

2 Critical thresholds

- Main equations
- Euler-Alignment system
- Euler-Alignment-Poisson system

Repulsive Newtonian with Quadractic confinement

- Main equations
- Proof

4 Conclusions

Modelling & Levels of Description	Repulsive Newtonian with Quadractic confinement	
	00000000	
Main equations		

Main equations

Euler equations with Newtonian repulsion and quadratic confinement:

 $\begin{aligned} \partial_t \rho + \partial_x (\rho u) &= 0, \quad x \in \mathbb{R}, \quad t \ge 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2) &= -\rho u - \rho \partial_x K \star \rho, \end{aligned}$

where $-|x| + \frac{x^2}{2}$.³

Initial data: density compactly supported in $\Omega_0 := \Omega(0) = (a_0, b_0)$ with

$$(\rho(t, \cdot), u(t, \cdot))|_{t=0} = (\rho_0, u_0) \in H^2(\Omega_0) \times H^3(\Omega_0),$$

The initial mass and momentum are:

$$0 < M_0 := \int_{\Omega_0} \rho_0(x) dx$$
 and $M_1 := \int_{\Omega_0} \rho_0(x) u_0(x) dx$.

Lagrangian solutions: $f(t,x) := \rho(t,\eta(t,x))$ and $v(t,x) := u(t,\eta(t,x))$ with

$$\frac{d\eta(t,x)}{dt} = u(t,\eta(t,x)) \quad \text{with} \quad \eta(0,x) = x \in \Omega_0 \,.$$

³see also S. Engelberg, H. Liu and E. Tadmor (Indiana Univ. Math. J. 2001) for critical thresholds.

Modelling & Levels of Description	Repulsive Newtonian with Quadractic confinement	
	00000000	
Main equations		

Main equations

Euler equations with Newtonian repulsion and quadratic confinement:

 $\partial_t \rho + \partial_x (\rho u) = 0, \quad x \in \mathbb{R}, \quad t \ge 0,$ $\partial_t (\rho u) + \partial_x (\rho u^2) = -\rho u - \rho \partial_x K \star \rho,$

where $-|x| + \frac{x^2}{2}$.³

Initial data: density compactly supported in $\Omega_0 := \Omega(0) = (a_0, b_0)$ with

$$(\rho(t,\cdot),u(t,\cdot))|_{t=0}=(\rho_0,u_0)\in H^2(\Omega_0)\times H^3(\Omega_0),$$

The initial mass and momentum are:

$$0 < M_0 := \int_{\Omega_0} \rho_0(x) dx$$
 and $M_1 := \int_{\Omega_0} \rho_0(x) u_0(x) dx$.

Lagrangian solutions: $f(t, x) := \rho(t, \eta(t, x))$ and $v(t, x) := u(t, \eta(t, x))$ with

$$\frac{d\eta(t,x)}{dt} = u(t,\eta(t,x)) \quad \text{with} \quad \eta(0,x) = x \in \Omega_0 \,.$$

³see also S. Engelberg, H. Liu and E. Tadmor (Indiana Univ. Math. J. 2001) for critical thresholds.

Modelling & Levels of Description	Repulsive Newtonian with Quadractic confinement	
	00000000	
Main equations		

Main equations

Euler equations with Newtonian repulsion and quadratic confinement:

 $\partial_t \rho + \partial_x (\rho u) = 0, \quad x \in \mathbb{R}, \quad t \ge 0,$ $\partial_t (\rho u) + \partial_x (\rho u^2) = -\rho u - \rho \partial_x K \star \rho,$

where $-|x| + \frac{x^2}{2}$.³

Initial data: density compactly supported in $\Omega_0 := \Omega(0) = (a_0, b_0)$ with

$$(\rho(t, \cdot), u(t, \cdot))|_{t=0} = (\rho_0, u_0) \in H^2(\Omega_0) \times H^3(\Omega_0),$$

The initial mass and momentum are:

$$0 < M_0 := \int_{\Omega_0} \rho_0(x) dx$$
 and $M_1 := \int_{\Omega_0} \rho_0(x) u_0(x) dx$.

Lagrangian solutions: $f(t,x) := \rho(t,\eta(t,x))$ and $v(t,x) := u(t,\eta(t,x))$ with

$$\frac{d\eta(t,x)}{dt} = u(t,\eta(t,x)) \quad \text{with} \quad \eta(0,x) = x \in \Omega_0 \,.$$

³see also S. Engelberg, H. Liu and E. Tadmor (Indiana Univ. Math. J. 2001) for critical thresholds.

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

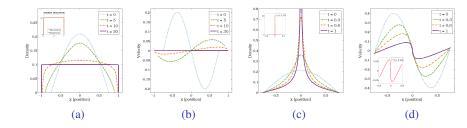
Main equations

Stationary States & Numerical Simulation

$$\rho_{\infty}(x) = \frac{M_0}{2} \quad \text{and} \quad u_{\infty}(x) = 0 \quad \text{for} \quad x \in \Omega_{\infty} := (\Gamma - 1, \Gamma + 1)$$

with

$$\Gamma := \frac{1}{M_0} \left(\int_{\mathbb{R}} x \rho_0(x) \, dx + \int_{\mathbb{R}} \rho_0(x) u_0(x) \, dx \right) \, .$$



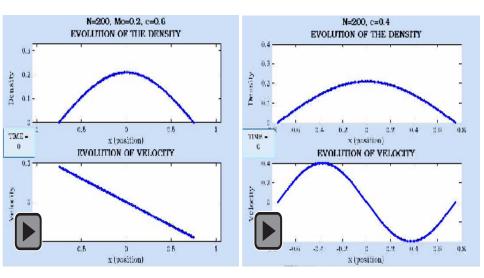
Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Main equations

Numerical illustration by Lagrangian Methods⁴



⁴C.-Choi-Pérez, book chapter edited by Bellomo, Degond & Tadmor

Modelling & Levels of Description	Repulsive Newtonian with Quadractic confinement	
	00000000	
Main equations		

Main Result⁵

Blow-up versus global existence

Assume that (f, v) is a classical solution to the hydrodynamic system, then: **Case A:** If $1 - 4M_0 > 0$, the solution blows up in finite time if and only if there exists a $x^* \in \Omega_0$ such that

$$\partial_x u_0(x^*) < 0, \quad M_0 - 2\rho_0(x^*) < \lambda_1 \partial_x u_0(x^*),$$

and

$$2\rho_0(x^*) \le (\lambda_1 \partial_x u_0(x^*) - M_0 + 2\rho_0(x^*))^{-\lambda_2/\sqrt{\Xi}} (\lambda_2 \partial_x u_0(x^*) - M_0 + 2\rho_0(x^*))^{\lambda_1/\sqrt{\Xi}}.$$

Case B: If $1 - 4M_0 = 0$, the solution blows up in finite time if and only if there exists a $x^* \in \Omega_0$ such that

$$\partial_x u_0(x^*) < \min\left\{0, 4\rho_0(x^*) - \frac{1}{2}\right\},$$

and

$$\log\left(\frac{8\rho_0(x^*)}{8\rho_0(x^*) - 2\partial_x u_0(x^*) - 1}\right) \le \frac{2\partial_x u_0(x^*)}{8\rho_0(x^*) - 2\partial_x u_0(x^*) - 1}.$$

Case C: If $1 - 4M_0 < 0$: more complicated conditions but an if and only if.

⁵C.-Choi-Zatorska, M3AS 2016

Modelling & Levels of Description	Critical thresholds	Repulsive Newtonian with Quadractic confinement	
Main equations			
Main Result ⁶			

Asymptotic Behavior

Moreover, for all cases, if there is no finite-time blow-up, then the classical solution (f, v) exists globally in time and it satisfies

$$f_{\infty}(x) := \lim_{t \to \infty} f(t, x) = \frac{M_0}{2} \quad \text{and} \quad v_{\infty}(x) := \lim_{t \to \infty} v(t, x) = 0 \quad \text{for all } x \in \Omega_0,$$

exponentially fast. Moreover, the characteristic flow satisfies

$$\eta_{\infty}(x) := \lim_{t \to \infty} \eta(t, x) = \frac{1}{M_0} \left(\int_{\Omega_0} y \rho_0(y) \, dy + \int_{\Omega_0} \rho_0(y) \, u_0(y) \, dy + 2 \int_{a_0}^x \rho_0(y) \, dy - M_0 \right)$$

for all $x \in \Omega_0$. In particular, $\Omega(t) = (a(t), b(t))$ and

 $\lim_{t \to \infty} |a(t) - \Gamma + 1| = 0 \quad \text{and} \quad \lim_{t \to \infty} |b(t) - \Gamma - 1| = 0,$

exponentially fast. As a consequence, there exists C > 0 depending on the L^{∞} bounds of ρ_0 and $\partial_x u_0$ in Ω_0 and $\lambda > 0$ depending on the initial mass M_0 such that

 $\|\rho(t,\cdot)-\rho_{\infty}(\cdot)\|_{L^{1}(\mathbb{R})}\leq Ce^{-\lambda t}.$

Critical thresholds

Repulsive Newtonian with Quadractic confinement

Conclusions

Outline

Proof

Modelling & Levels of Description

- Collective Behavior Models
- From micro to macro: PDE models
- Qualitative Properties & Hydrodynamics

2 Critical thresholds

- Main equations
- Euler-Alignment system
- Euler-Alignment-Poisson system

Repulsive Newtonian with Quadractic confinement

- Main equations
- Proof

4 Conclusions

Modelling & Levels of Description	Critical thresholds	Repulsive Newtonian with Quadractic confinement	
Proof			
Main Ideas			

 Using the characteristic flow, it is easy to check that (ρ, u) is a local-in-time classical solution of the pressure-less Euler-type system if and only if (f, v) is a classical solution of the system

$$f(t,x)\frac{\partial\eta(t,x)}{\partial x} = \rho_0(x),$$

$$\partial_t v(t,x) + v(t,x) = -\int_{\Omega(t)} W'(\eta(t,x) - y)\rho(t,y)dy$$

$$= -\int_{\Omega_0} W'(\eta(t,x) - \eta(t,y))\rho_0(y)\,dy$$

for $(t, x) \in (0, \infty) \times \Omega_0$, where we used the conservation of mass.

• Taking a further *t*-derivative on the second equation, we deduce

 $\begin{aligned} \partial_{tt}^{2} v(t,x) + \partial_{t} v(t,x) &= -\int_{\Omega_{0}} \partial^{2} W(\eta(t,x) - \eta(t,y)) \left(v(t,x) - v(t,y) \right) \rho_{0}(y) \, dy \\ &= -v M_{0} + \int_{\Omega_{0}} v(t,y) \rho_{0}(y) \, dy. \end{aligned}$

Modelling & Levels of Description	Critical thresholds	Repulsive Newtonian with Quadractic confinement	
Proof			
Main Ideas			

 Using the characteristic flow, it is easy to check that (ρ, u) is a local-in-time classical solution of the pressure-less Euler-type system if and only if (f, v) is a classical solution of the system

$$f(t,x)\frac{\partial\eta(t,x)}{\partial x} = \rho_0(x),$$

$$\partial_t v(t,x) + v(t,x) = -\int_{\Omega(t)} W'(\eta(t,x) - y)\rho(t,y)dy$$

$$= -\int_{\Omega_0} W'(\eta(t,x) - \eta(t,y))\rho_0(y)\,dy$$

for $(t, x) \in (0, \infty) \times \Omega_0$, where we used the conservation of mass.

• Taking a further *t*-derivative on the second equation, we deduce

$$\partial_{tt}^{2} v(t, x) + \partial_{t} v(t, x) = -\int_{\Omega_{0}} \partial^{2} W(\eta(t, x) - \eta(t, y)) \left(v(t, x) - v(t, y) \right) \rho_{0}(y) \, dy$$

= $-v M_{0} + \int_{\Omega_{0}} v(t, y) \rho_{0}(y) \, dy.$

Modelling & Levels of Description		Repulsive Newtonian with Quadractic confinement	
00000000	000000000000000000000000000000000000000	00000000	
Proof			

Main Ideas

• Evolution of the first moment:

$$\int_{\Omega_0} v(t,x) \rho_0(x) \, dx = e^{-t} \int_{\Omega_0} \rho_0(x) u_0(x) \, dx.$$

This leads to an explicit second order ODE for the velocity field over characteristics: $\partial_{tt}^2 v + \partial_t v + M_0 v = M_1 e^{-t}$ for t > 0.

- Solving explicitly the ODE for v leads to explicit formulas for both η and $\partial_x \eta$. Blow-up happens if and only if there exists $t_* > 0$ and $x_* \in \Omega_0$ such that $\partial_x \eta(t_*, x_*) = 0$. The first theorem is proved after careful study of the different cases for the ODE.
- The second theorem is shown by carefully estimating the difference between the solution and an intermediate profile given by

$$\bar{\rho}(t,y) = \frac{M_0}{|\Omega(t)|} \chi_{\Omega(t)}(y) \text{ for } y \in \mathbb{R}.$$

Modelling & Levels of Description		Repulsive Newtonian with Quadractic confinement	
00000000	0000000000000000000	00000000	
Proof			

Main Ideas

• Evolution of the first moment:

٠

$$\int_{\Omega_0} v(t,x)\rho_0(x)\,dx = e^{-t}\int_{\Omega_0} \rho_0(x)u_0(x)\,dx.$$

This leads to an explicit second order ODE for the velocity field over characteristics: $\partial_{tt}^2 v + \partial_t v + M_0 v = M_1 e^{-t}$ for t > 0.

- Solving explicitly the ODE for v leads to explicit formulas for both η and $\partial_x \eta$. Blow-up happens if and only if there exists $t_* > 0$ and $x_* \in \Omega_0$ such that $\partial_x \eta(t_*, x_*) = 0$. The first theorem is proved after careful study of the different cases for the ODE.
- The second theorem is shown by carefully estimating the difference between the solution and an intermediate profile given by

$$\bar{\rho}(t,y) = \frac{M_0}{|\Omega(t)|} \chi_{\Omega(t)}(y) \text{ for } y \in \mathbb{R}.$$

Modelling & Levels of Description		Repulsive Newtonian with Quadractic confinement	
00000000	000000000000000000000000000000000000000	0000000	
Proof			

Main Ideas

• Evolution of the first moment:

$$\int_{\Omega_0} v(t,x)\rho_0(x)\,dx = e^{-t}\int_{\Omega_0} \rho_0(x)u_0(x)\,dx.$$

This leads to an explicit second order ODE for the velocity field over characteristics: $\partial_{tt}^2 v + \partial_t v + M_0 v = M_1 e^{-t}$ for t > 0.

- Solving explicitly the ODE for v leads to explicit formulas for both η and $\partial_x \eta$. Blow-up happens if and only if there exists $t_* > 0$ and $x_* \in \Omega_0$ such that $\partial_x \eta(t_*, x_*) = 0$. The first theorem is proved after careful study of the different cases for the ODE.
- The second theorem is shown by carefully estimating the difference between the solution and an intermediate profile given by

$$\bar{\rho}(t,y) = \frac{M_0}{|\Omega(t)|} \chi_{\Omega(t)}(y) \text{ for } y \in \mathbb{R}.$$

Repulsive Newtonian with Quadractic confinement

- Simple modelling of the three main mechanisms leads to complicated patterns.
- Hydrodynamic Equations without pressure but with nonlocal terms can be at least formally derived.
- Critical thresholds in 1D are obtained for the Euler-type equations. Sharp criteria for alignment but not with attractive-repulsive potentials.
- Sharp Results for thresholds and asymptotic behavior for teh particular case of Newtonian repulsive confined quadratically.
- References:
 - C.-D'Orsogna-Panferov (KRM 2008).
 - C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
 - C.-Klar-Martin-Tiwari (M3AS 2010).
 - C.-Choi-Tadmor-Tan (M3AS 2016)
 - C.-Choi-Zatorska (M3AS 2016)
 - C.-Choi-Pérez (Book Chapter, Birkhäuser volume edited by Bellomo, Degond & Tadmor)

Repulsive Newtonian with Quadractic confinement

Conclusions

- Simple modelling of the three main mechanisms leads to complicated patterns.
- Hydrodynamic Equations without pressure but with nonlocal terms can be at least formally derived.
- Critical thresholds in 1D are obtained for the Euler-type equations. Sharp criteria for alignment but not with attractive-repulsive potentials.
- Sharp Results for thresholds and asymptotic behavior for teh particular case of Newtonian repulsive confined quadratically.
- References:
 - C.-D'Orsogna-Panferov (KRM 2008).
 - C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
 - C.-Klar-Martin-Tiwari (M3AS 2010).
 - C.-Choi-Tadmor-Tan (M3AS 2016)
 - C.-Choi-Zatorska (M3AS 2016)
 - C.-Choi-Pérez (Book Chapter, Birkhäuser volume edited by Bellomo, Degond & Tadmor)

- Simple modelling of the three main mechanisms leads to complicated patterns.
- Hydrodynamic Equations without pressure but with nonlocal terms can be at least formally derived.
- Critical thresholds in 1D are obtained for the Euler-type equations. Sharp criteria for alignment but not with attractive-repulsive potentials.
- Sharp Results for thresholds and asymptotic behavior for teh particular case of Newtonian repulsive confined quadratically.
- References:
 - C.-D'Orsogna-Panferov (KRM 2008).
 - C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
 - C.-Klar-Martin-Tiwari (M3AS 2010).
 - C.-Choi-Tadmor-Tan (M3AS 2016)
 - C.-Choi-Zatorska (M3AS 2016)
 - C.-Choi-Pérez (Book Chapter, Birkhäuser volume edited by Bellomo, Degond & Tadmor)

- Simple modelling of the three main mechanisms leads to complicated patterns.
- Hydrodynamic Equations without pressure but with nonlocal terms can be at least formally derived.
- Critical thresholds in 1D are obtained for the Euler-type equations. Sharp criteria for alignment but not with attractive-repulsive potentials.
- Sharp Results for thresholds and asymptotic behavior for the particular case of Newtonian repulsive confined quadratically.
- References:
 - C.-D'Orsogna-Panferov (KRM 2008).
 - C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
 - C.-Klar-Martin-Tiwari (M3AS 2010).
 - C.-Choi-Tadmor-Tan (M3AS 2016)
 - C.-Choi-Zatorska (M3AS 2016)
 - C.-Choi-Pérez (Book Chapter, Birkhäuser volume edited by Bellomo, Degond & Tadmor)

- Simple modelling of the three main mechanisms leads to complicated patterns.
- Hydrodynamic Equations without pressure but with nonlocal terms can be at least formally derived.
- Critical thresholds in 1D are obtained for the Euler-type equations. Sharp criteria for alignment but not with attractive-repulsive potentials.
- Sharp Results for thresholds and asymptotic behavior for teh particular case of Newtonian repulsive confined quadratically.
- References:
 - C.-D'Orsogna-Panferov (KRM 2008).
 - C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
 - Sc.-Klar-Martin-Tiwari (M3AS 2010).
 - C.-Choi-Tadmor-Tan (M3AS 2016)
 - C.-Choi-Zatorska (M3AS 2016)
 - C.-Choi-Pérez (Book Chapter, Birkhäuser volume edited by Bellomo, Degond & Tadmor)