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Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed s ocial organization: insects (locusts, ants, bees ...), fish, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle
operation.

Interaction regions between individualsa

aAoki, Helmerijk et al., Barbaro, Birnir et al.

Repulsion Region: Rk.

Attraction Region: Ak.

Orientation Region: Ok.



icreauab

Modelling From micro to macro: PDE models Phase Transition for Cucker-Smale Reduced Hydrodynamics Conclusions

Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed s ocial organization: insects (locusts, ants, bees ...), fish, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle
operation.

Interaction regions between individualsa

aAoki, Helmerijk et al., Barbaro, Birnir et al.

Repulsion Region: Rk.

Attraction Region: Ak.

Orientation Region: Ok.



icreauab

Modelling From micro to macro: PDE models Phase Transition for Cucker-Smale Reduced Hydrodynamics Conclusions

Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed s ocial organization: insects (locusts, ants, bees ...), fish, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle
operation.

Interaction regions between individualsa

aAoki, Helmerijk et al., Barbaro, Birnir et al.

Repulsion Region: Rk.

Attraction Region: Ak.

Orientation Region: Ok.



icreauab

Modelling From micro to macro: PDE models Phase Transition for Cucker-Smale Reduced Hydrodynamics Conclusions

Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed s ocial organization: insects (locusts, ants, bees ...), fish, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle
operation.

Interaction regions between individualsa

aAoki, Helmerijk et al., Barbaro, Birnir et al.

Repulsion Region: Rk.

Attraction Region: Ak.

Orientation Region: Ok.



icreauab

Modelling From micro to macro: PDE models Phase Transition for Cucker-Smale Reduced Hydrodynamics Conclusions

Collective Behavior Models

2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
dxi

dt
= vi,

m
dvi

dt
= (α− β |vi|2)vi −

∑
j 6=i

∇U(|xi − xj|).

Model assumptions:

Self-propulsion and friction terms
determines an asymptotic speed of√
α/β.

Attraction/Repulsion modeled by an
effective pairwise potential U(x).

U(r) = −CAe−r/`A + CRe−r/`R .

One can also use Bessel functions in 2D
and 3D to produce such a potential.

C = CR/CA > 1, ` = `R/`A < 1 and
C`2 < 1:
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Collective Behavior Models

Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
dxi

dt
= vi,

dvi

dt
=

N∑
j=1

aij (vj − vi) ,

with the communication rate, γ ≥ 0:

aij = a(|xi − xj|) =
1

(1 + |xi − xj|2)γ
.

Asymptotic flocking: γ < 1/2; Cucker-Smale.
General Proof for γ ≤ 1/2; C.-Fornasier-Rosado-Toscani.

Global Stability for the full model: Albi-Balague-C.-VonBrecht (SIAM J. Appl.
Math. 2014), C.-Huang-Martin (Nonlinear Analysis: Real World Applications 2014).
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Fixed Speed models

Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:
dXi

t = V i
t dt,

dV i
t =
√

2D P(V i
t ) ◦ dBi

t − P(V i
t )

 1
N

N∑
j=1

K(Xi
t−Xj

t)(V i
t − V j

t )

 dt.

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere
in Rd, i.e.,

P(v) = I − v⊗ v
|v|2 .

Noise in the Stratatonovich sense: imposed by the rigorous construction of the
Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

Main issue: phase transition driven by noise D: Degond-Liu-Frouvelle.
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Vlasov-like Models

Convergence of the particle method

Empirical measures: if xi, vi : [0, T)→ Rd, for i = 1, . . . ,N, is a solution to the
ODE system,

dxi

dt
= vi,

dvi

dt
=

propulsion-friction︷ ︸︸ ︷
(α− β |vi|2)vi −

attraction-repulsion︷ ︸︸ ︷∑
j 6=i

mj∇U(|xi − xj|) +

orientation︷ ︸︸ ︷
N∑

j=1

mjaij (vj − vi) .

then the fN : [0, T)→ P1(Rd) given by

fN(t) :=
N∑

i=1

miδ(xi(t),vi(t)) with
N∑

i=1

mi = 1 ,

is expected to be the solution corresponding to initial atomic measures.
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Vlasov-like Models

Mesoscopic models

Velocity consensus Model:

∂f
∂t

+ v · ∇xf = ∇v ·
[(∫

R2d

v− w
(1 + |x− y|2)γ f (y,w, t) dy dw

)
︸ ︷︷ ︸

:=ξ(f )(x,v,t)

f (x, v, t)
]

Orientation, Attraction and Repulsion:

∂f
∂t

+ v · ∇xf − divv [(∇xU ? ρ)f ] = ∇v · [ξ(f )(x, v, t)f (x, v, t)] .

Rigorous proofs of the mean field limit: Cañizo-C.-Rosado (M3AS 2010),
Bolley-Cañizo-Rosado (M3AS 2011), C.-Choi-Hauray (Springer Verlag 2012),
C.-Choi-Hauray-Salem (to appear in JEMS).
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Fixed Speed Models as Asymptotic Limits

Short Relaxation towards Cruising Speed
Scaled Vlasov equation in d = 2, 3 dimensions:

∂tf ε + v ·∇xf ε + aε(t, x) ·∇vf ε +
1
ε

divv{f ε(α−β|v|2)v} = 0, (t, x, v) ∈ R+×R2d

with aε(t, ·) = −∇xU ? ρε(t, ·)− H ? f ε(t, ·).

This asymptotic limit enforces that particles move at cruising speed
√
α/β. If one

formally does the expansion

f ε = f + εf (1) + ε2f (2) + ...

we get
divv{f (α− β|v|2)v} = 0

∂tf + divx(fv) + divv(fa(t, x)) + divv{f (1)(α− β|v|2)v} = 0 ,

up to first order.

To eliminate the higher order term we use the invariants of the flow associated to the
field (α− β|v|2)v · ∇v, functions of x and v/|v|.
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Fixed Speed Models as Asymptotic Limits

Vicsek Model as Asymptotic Limit
Bostan-C. (M3AS 2013)

Assume that U ∈ C2
b(Rd), H(x, v) = h(x)v with h ∈ C1

b(Rd) nonnegative,
f in ∈ P1(Rd × Rd), suppf in ⊂ {(x, v) : |x| ≤ L0, r0 ≤ |v| ≤ R0}.

Then for all δ > 0, the sequence (f ε)ε converges towards the measure solution
f (t, x, ω) on (x, ω) ∈ Rd ×

√
α/βS of the problem

∂tf + divx(fω)− divω

{
f
(

I − 1
r2 (ω ⊗ ω)

)
(∇xU ? ρ+ H ? f )

}
= 0

with initial data f (0) =
〈
f in〉.

Remarks:

Adding noise we get from ∆vf to the Laplace-Beltrami operator on the sphere
∆ωf . We only know how to perform the formal expansion but not the rigorous
limit.

This formally shows that the fixed speed limit of the Cucker-Smale’s model is
the Vicsek’s model.
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Local Cucker-Smale Model

The Local Cucker-Smale model with noise

Phase Transition (Barbaro-Cañizo-C.-Degond, SIAM MMS 2016)

We consider the following kinetic flocking model:

∂tf + v∇xf = ∇v ·
(

(v− uf )f − αv(1− |v|2)f + D∇vf
)
,

where

uf (t, x) =

∫
vf (t, x, v) dv∫
f (t, x, v) dv

The first term is a Cucker-Smale-like term, encourages the velocity to align
with the mean velocity

The second term provides self-propulsion and friction, encouraging unit
velocities

The last term captures the influence of noise in the velocity
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Phase Transition driven by Noise

The homogeneous problem

Looking at the spatially homogeneous problem:

∂tf = ∇v ·
(

(v− uf )f − αv(1− |v|2)f + D∇vf
)

We have a gradient flow structure: write the equation as ∂tf = ∇v · (f∇vξ) with
ξ = Φ(v) + W ∗ f + D log f

Confinement in v: Φ(v) = α
(
|v|4

4 −
|v|2

2

)
Interaction potential of the form W(v) = |v|2

2
Linear diffusion.

Our model is continuity equation with velocity field of the form −∇vξ

Natural entropy for this equation given by the free energy of the system:

F [f ] :=

∫
Rd

Φ(v)f (v) dv +
1
2

∫
Rd

∫
Rd

W(v− w)f (v)f (w) dw dv + D
∫
Rd

f (v) log f (v) dv

=

∫
Rd

(
α |v|

4

4 + (1− α) |v|
2

2

)
f (v) dv− 1

2
|uf |2 + D

∫
Rd

f log f (v) dv ,
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Phase Transition driven by Noise

The stationary solutions

We consider stationary solutions of the form:

f (v) = 1
Z exp

(
−1
D

[
α |v|

4

4 + (1− α) |v|
2

2 − uf · v
])

We see that in order for the stationary solution to exist, uf must be a root of the
equation:

H(u,D) =

∫
(v− u)f (v)dv

We prove that, in any dimension1

There is a region of parameter space with only one such root, namely
u = 0
There is another region of parameter space with more than one root, u = 0
and |u| = Cα,D 6= 0

11D case was proven independently in J. Tugaut’s Phase transitions of McKean-Vlasov
processes in symmetric and asymmetric multi-wells landscape, and S. Herrmann and J. Tugaut.
Non-uniqueness of stationary measures for self-stabilizing processes
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Phase Transition driven by Noise

H(u,D)
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Phase Transition driven by Noise

Main idea of our proof

Our proof hinges Laplace’s method and the behavior ofH(u,D) as D varies:

For small D, we are able to use Laplace’s Method to show that there is a
nonzero stationary solution
For large D, ∂H

∂u is negative for all u.

Since we know that u = 0 is a solution for all D, this shows that there is more
than one root ofH for small D, and only one root for large D
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Phase Transition driven by Noise

The case of small D

Find u such that it is a root ofH(u,D), i.e. as D→ 0,

u =

∫
exp
(
− 1

D Pu(v)
)

v1dv∫
exp
(
− 1

D Pu(v)
)

dv
(1)

Laplace’s Method tells us that this u must be such that

u ≈
(2πD)

d
2 |H(Pu(ṽ))|−

1
2 exp

(
− 1

D Pu(ṽ)
)

ṽ1

(2πD)
d
2 |H(Pu(ṽ))|−

1
2 exp

(
− 1

D Pu(ṽ)
) (2)

where ṽ is the global minimum of Pu(v).

Find the minima of Pu(v) = α |v|
4

4 + (1− α) |v|
2

2 − uv1

This global minimum is strictly positive

Hence, there is a nonzero stationary solution in addition to u=0

In order to prove this rigorously, we need to apply an implicit function theorem from
the positive root for D = 0, this needs to compute next orders in the expansion of
Laplace’s theorem and their limits as the noise D→ 0. These expansions are not
standard since we need to track carefully the powers of D involved in each term.
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1
2 exp

(
− 1

D Pu(ṽ)
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1
2 exp

(
− 1

D Pu(ṽ)
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Phase Transition driven by Noise
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Phase Transition driven by Noise

The case of D → ∞

We show thatH is strictly decreasing in u for D→∞
We split the derivative into two pieces, one positive and one negative, and
show that the negative piece compensates for the positive
This shows thatH can have at most one zero for large D
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Numerical Exploration

Varying α and D

We have proven analytically that for small D, there is more than one stationary
solutions, while for large D, there is only one

Now, numerically consider where in parameter space each of these situations
occur

Vary α and D and count the number of roots ofH
Compare also to where ∂H

∂u is positive and negative
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Numerical Exploration

Exploring the limit α→ ∞ in 2D
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Numerical Exploration

Stability of the stationary solutions in 1D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D (diffusion coefficient)

u
 (

m
a

g
n

it
u

d
e

 o
f 

th
e

 v
e

lo
c
it
y
 o

f 
s
ta

ti
o

n
a

ry
 s

o
lu

ti
o

n
)

 

 

alpha=1.5

alpha=3.0

alpha=4.5



icreauab

Modelling From micro to macro: PDE models Phase Transition for Cucker-Smale Reduced Hydrodynamics Conclusions

Numerical Exploration

Comparing particles to f in 1D
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Asymptotic limit
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Asymptotic limit

Hydrodynamics via Asymptotic Limit
Bostan-C. (M3AS 2017)

Given a solution to

∂tf ε + divx(f εv) +
1
ε2 divv(f ε(α− β|v|2)v) =

1
ε

divv{f ε(v− u[f ε]) + σ∇vf ε}

for any σ, r such that σr2 ∈]0, 1
d [, we denote by l = l

(
σ
r2

)
the unique positive solution

of λ(l) = σ
r2 l with

λ(l) =

∫ π
0 cos θel cos θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ
, l ∈ R+, d ≥ 2.

Then the limit distribution f = limε↘0 f ε, is a von Mises-Fisher equilibrium
f = ρMlΩ(ω) dω on rSd−1, where the density ρ(t, x) and the orientation Ω(t, x)
satisfy the macroscopic equations (SOH)

∂tρ+ divx

(
ρ

lσ
r

Ω

)
= 0, (t, x) ∈ R+ × Rd

∂tΩ + kd r(Ω · ∇x)Ω +
r
l
(Id − Ω⊗ Ω)

∇xρ

ρ
= 0
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for any σ, r such that σr2 ∈]0, 1
d [, we denote by l = l

(
σ
r2

)
the unique positive solution

of λ(l) = σ
r2 l with

λ(l) =

∫ π
0 cos θel cos θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ
, l ∈ R+, d ≥ 2.

Then the limit distribution f = limε↘0 f ε, is a von Mises-Fisher equilibrium
f = ρMlΩ(ω) dω on rSd−1, where the density ρ(t, x) and the orientation Ω(t, x)
satisfy the macroscopic equations (SOH)

∂tρ+ divx

(
ρ

lσ
r

Ω

)
= 0, (t, x) ∈ R+ × Rd

∂tΩ + kd r(Ω · ∇x)Ω +
r
l
(Id − Ω⊗ Ω)

∇xρ

ρ
= 0



icreauab

Modelling From micro to macro: PDE models Phase Transition for Cucker-Smale Reduced Hydrodynamics Conclusions

Asymptotic limit

Hydrodynamics via Asymptotic Limit
Bostan-C. (M3AS 2017)

Given a solution to

∂tf ε + divx(f εv) +
1
ε2 divv(f ε(α− β|v|2)v) =

1
ε

divv{f ε(v− u[f ε]) + σ∇vf ε}

for any σ, r such that σr2 ∈]0, 1
d [, we denote by l = l

(
σ
r2

)
the unique positive solution

of λ(l) = σ
r2 l with

λ(l) =

∫ π
0 cos θel cos θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ
, l ∈ R+, d ≥ 2.

Then the limit distribution f = limε↘0 f ε, is a von Mises-Fisher equilibrium
f = ρMlΩ(ω) dω on rSd−1, where the density ρ(t, x) and the orientation Ω(t, x)
satisfy the macroscopic equations (SOH)

∂tρ+ divx

(
ρ

lσ
r

Ω

)
= 0, (t, x) ∈ R+ × Rd

∂tΩ + kd r(Ω · ∇x)Ω +
r
l
(Id − Ω⊗ Ω)

∇xρ

ρ
= 0



icreauab

Modelling From micro to macro: PDE models Phase Transition for Cucker-Smale Reduced Hydrodynamics Conclusions

Asymptotic limit

Expansion
The behavior of the family (f ε)ε>0, as the parameter ε becomes small, follows by
analyzing the formal expansion

f ε = f + εf (1) + ε2f (2) + ...

Plugging the above Ansatz into the kinetic equation, leads to the constraints

divv{f (α− β|v|2)v} = 0

divv{f (1)(α− β|v|2)v} = divv{f (v− u[f ]) + σ∇vf} := Q(f )

and to the time evolution equations

∂tf + divx(fv) + divv{f (2)(α− β|v|2)v} = Lf (f (1))

with

Lf (f (1)) := divv{f (1)(v− u[f ]) + σ∇vf (1)} − divv

{
f

∫
Rd f (1)(v′ − u[f ]) dv′∫

Rd f dv′

}

cutting the development at second order.
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Asymptotic limit

First term
0th-order term in expansion

Assume that (1 + |v|2)F ∈M+
b (Rd). Then F solves divv{F(α− β|v|2)v} = 0 in

D′(Rd) i.e., ∫
Rd

(α− β|v|2)v · ∇vϕ dF(v) = 0, for any ϕ ∈ C1
c (Rd)

if and only if suppF ⊂ {0} ∪ rS.

Let F ∈M+
b (Rd) be a non negative bounded measure on Rd. We denote by 〈F〉 the

measure corresponding to the linear application

ψ →
∫
Rd
ψ(v) 1v=0F(v) +

∫
Rd
ψ

(
r

v
|v|

)
1v6=0F(v) ,

for all ψ ∈ C0
c (Rd).

Elimination

For any f ∈M+
b (Rd × Rd) such that divv{f (α− β|v|2)v} ∈ Mb(Rd × Rd), we

have
〈
divv{f (α− β|v|2)v}

〉
= 0.
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Asymptotic limit

Von Mises Distribution
For any l ∈ R+,Ω ∈ S, we introduce the von Mises-Fisher distribution

MlΩ(ω) dω =
exp
(
lΩ · ωr

)∫
rSd−1 exp

(
lΩ · ω′r

)
dω ′

dω, ω ∈ rSd−1.

Kernel of the averaged collision operator

Let F ∈M+
b (Rd) be a non negative bounded measure on Rd, supported in rSd−1.

The following statements are equivalent:
1. 〈Q(F)〉 = 0, that is∫

v6=0

{
−(v− u[F]) · ∇v

[
ψ̃

(
r

v
|v|

)]
+ σ∆v

[
ψ̃

(
r

v
|v|

)]}
F dv = 0,

for all ψ̃ ∈ C2(rSd−1).
2. There are ρ ∈ R+,Ω ∈ S such that F = ρMlΩdω where l ∈ R+ satisfies∫ π

0 cos θ el cos θ sind−2 θ dθ∫ π
0 el cos θ sind−2 θ dθ

=
σ

r2 l.
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Conclusions & Open Problems

Stability of the symmetric and non-symmetric stationary states as solutions of
the homogeneous problem is not analytically known.

Uniqueness of the non symmetric equilibria except symmetries is open.

Phase transitions from ordered to disordered state driven by noise in the
inhomogeneous case should be explored.

Reduced Hydrodynamics recovered from the whole space local Cucker-Smale
model with noise by asymptotic limits.

References:

1 C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
2 Bolley-Cañizo-C. (M3AS 2011 & AML 2011).
3 Bostan-C. (M3AS 2013 & 2017).
4 Barbaro-Cañizo-C.-Degond (SIAM MMS 2016).
5 Aceves-Bostan-C.-Degond (in preparation).
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