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2nd Order Model: Newton’s like equations

dvi 2
L= (=B lvi— > VU(xi = x)).

J#

Model assumptions: C=Cr/Cx>1,L=1lg/ls <1and
CP <1
@ Self-propulsion and friction terms

determines an asymptotic speed of U
Va/B.

@ Attraction/Repulsion modeled by an
effective pairwise potential U (x).

Pair-wise

U(r)= —Cae "t Cre R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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Cucker-Smale Model (IEEE Automatic Control 2007):

dx;
= Vi,

dr
dv; N
Vi

= ay(vi—w),
dt =

with the communication rate, v > 0:

1
aj = a(lxi — xj|) = (

L+ i — )"

Asymptotic flocking: v < 1/2; Cucker-Smale.
General Proof for v < 1/2; C.-Fornasier-Rosado-Toscani.

Global Stability for the full model: Albi-Balague-C.-VonBrecht (SIAM J. Appl.
Math. 2014), C.-Huang-Martin (Nonlinear Analysis: Real World Applications 2014).
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Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:
dx! = v dr,

N
dV; = 2D P(V}) o dB: — P(V}) v S KEX-Xx)(Vi = V) | ar.

=1

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere
inR% ie.,

VRV

P(yv) =1 —
R TTE

Noise in the Stratatonovich sense: imposed by the rigorous construction of the
Brownian motion on a manifold. Rigorous derivation: Bolley-Caiiizo-C.

Main issue: phase transition driven by noise D: Degond-Liu-Frouvelle.
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Convergence of the particle method

Empirical measures: if x;, v; : [0,T) — R?, fori = 1,...,N, is a solution to the
ODE system,
dx;
dt

Vi,

dvi
dt
then the fy : [0, T) — P1(RY) given by

N

N
() = Zm,é(h(,))\,l(,)) with Zm,- =1,
i=1

i=1

is expected to be the solution corresponding to initial atomic measures.
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Vlasov-like Models

Convergence of the particle method

Empirical measures: if x;, v; : [0,T) — R?, fori = 1,...,N, is a solution to the
ODE system,

dei _
e " . .
Ce . . orientation
propulsion-friction attraction-repulsion
N
dvi
7; = (a=BWPw - ijVU(\xf —x) + ija,-j (vi —vi).
#i j=1

then the fy : [0, T) — P1(RY) given by

N

N
() = Zm,é(,‘,(,))\,l(,)) with Zm,- =1,
=1

i=1

is expected to be the solution corresponding to initial atomic measures.
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Mesoscopic models

Velocity consensus Model:

of , B . ' vV—w i e '
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Mesoscopic models

Velocity consensus Model:

of - ' vV—w
a2 +v-Vif =V, [(// mf() w, 1) dy dw)f(x.,x,l)}
=E(f) (x,v,1)
Orientation, Attraction and Repulsion:
of
S Vof = div, (VU p)f] = V.- [60) (5, v, 0)f (v, 1)

Rigorous proofs of the mean field limit: Cafiizo-C.-Rosado (M3AS 2010),
Bolley-Caiiizo-Rosado (M3AS 2011), C.-Choi-Hauray (Springer Verlag 2012),
C.-Choi-Hauray-Salem (to appear in JEMS).
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Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2,3 dimensions:
. R 1 . 2 a
Of +v-Vif +a(t,x) - Vf + —divi{f*(a = B[ )} =0, (t,x,v) € Ry x R*

with a®(z,-) = =V, U % p°(t,-) — H*f°(t,-).
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Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2,3 dimensions:

. R 1 . 2 ’
Of +v-Vif +a(t,x) - Vf + —divi{f*(a = B[ )} =0, (t,x,v) € Ry x R*
with a®(z,-) = =V, U % p°(t,-) — H*f°(t,-).

This asymptotic limit enforces that particles move at cruising speed \/a/3. If one
formally does the expansion

fF=rtef e

we get
div, {f(a — BP[*)v} =0
Af + dive(fo) + divy (fa(t, x)) + div, {f"" (a — B[ v} =0,
up to first order.

To eliminate the higher order term we use the invariants of the flow associated to the
field (o — B|v|*)v - V,, functions of x and v/|v|.
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Vicsek Model as Asymptotic Limit

Bostan-C. (M3AS 2013)
Assume that U € (o (]Rd),_H(x, v) = h(x)v with h € C}(R) nonnegative,
£ € Pu(RY x R, suppf™ C {(x,v) : 4] < Lo,ro < Y < Ro}.

Then for all § > 0, the sequence (f°). converges towards the measure solution

f(t,x,w) on (x,w) € R? x y/a/BS of the problem

Of + divi(fw) — divy, {f <I— %(w@w)) (V\U*p—ﬁ—H*f)} =0

with initial data f (0 <f'">
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Vicsek Model as Asymptotic Limit

Bostan-C. (M3AS 2013)

Assume that U € (o (]Rd),_H(x, v) = h(x)v with h € C}(R) nonnegative,
£ € Pu(RY x R, suppf™ C {(x,v) : 4] < Lo,ro < Y < Ro}.

Then for all 6 > O the sequence (f). converges towards the measure solution
f(t,x,w) on (x,w) € R? x y/a/BS of the problem

Of + divi(fw) — divy, {f <I— %(w@w)) (V\U*p—ﬁ—H*f)} =0

with initial data f (0 <f'">

Remarks:

@ Adding noise we get from A,f to the Laplace-Beltrami operator on the sphere
A, f. We only know how to perform the formal expansion but not the rigorous
limit.

@ This formally shows that the fixed speed limit of the Cucker-Smale’s model is
the Vicsek’s model.
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The Local Cucker-Smale model with noise

Phase Transition (Barbaro-Caiiizo-C.-Degond, SIAM MMS 2016)

@ We consider the following kinetic flocking model:
Of +v9if = Vo (v = w)f = av(1 = P)f + DV ),

where

B Suf(t,x,v) dv

- ff(t,x, v)dv

@ The first term is a Cucker-Smale-like term, encourages the velocity to align
with the mean velocity

uf(tv x)

@ The second term provides self-propulsion and friction, encouraging unit
velocities

@ The last term captures the influence of noise in the velocity
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The homogeneous problem

@ Looking at the spatially homogeneous problem:

af = Vo (v = w)f = av(1 = p*)f + DY)
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The homogeneous problem

@ Looking at the spatially homogeneous problem:

af = Vo (v = w)f = av(1 = p*)f + DY)

@ We have a gradient flow structure: write the equation as ;f = V,, - (fV,£) with
E=®(v) + Wxf+ Dlogf
‘2

. V|4 9
o Confinementinv: ®(v) = « (% - l‘T)

_ WP

2

o Interaction potential of the form W(v)
o Linear diffusion.

@ Our model is continuity equation with velocity field of the form —V,£
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The homogeneous problem

@ Looking at the spatially homogeneous problem:

af = Vo (v = w)f = av(1 = p*)f + DY)

@ We have a gradient flow structure: write the equation as ;f = V,, - (fV,£) with
E=®(v) + Wxf+ Dlogf
o Confinementinv: ®(v) = « (% - %)

[v]

o Interaction potential of the form W(v) = %3

o Linear diffusion.

@ Our model is continuity equation with velocity field of the form —V,£

@ Natural entropy for this equation given by the free energy of the system:
1
Fif] = / D()f(v)dv+ = / / W —w)f(v)f(w)dwdv + D/ f)logf(v)dv
R4 2 RdJ rRd Rd

_ it — o) _Le
= [ (@b + 0 - ) ) do = D [ froes )b,
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The stationary solutions

@ We consider stationary solutions of the form:

) = Sexp (5 [alf + 1 -
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The stationary solutions

@ We consider stationary solutions of the form:

flv) = %exp (%1 [a%—k(l —oz)% —uf~v])

@ We see that in order for the stationary solution to exist, uy must be a root of the
equation:

H(u, D) = / (v — W) (v)dv
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The stationary solutions

@ We consider stationary solutions of the form:

[ 4

flv) = %exp (%1 [alVT—F(l —oz)% —uf~v])

@ We see that in order for the stationary solution to exist, uy must be a root of the
equation:

H(u, D) = / (v — W) (v)dv

@ We prove that, in any dimension’
o There is a region of parameter space with only one such root, namely
u=20
o There is another region of parameter space with more than one root, u = 0
and |u| = Cap #0

1D case was proven independently in J. Tugaut’s Phase transitions of McKean-Vlasov
processes in symmetric and asymmetric multi-wells landscape, and S. Herrmann and J. Tugaut.
Non-uniqueness of stationary measures for self-stabilizing processes
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H(u,D)

D=0.01
0.6 |—D=0.1
—D=0.2

048 ||—D=03
\ —D=0.4
—D=05

0.2 \ |I-p=06
—D=0.7
N —D=0.8

o S {l=D=0.9
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Phase Transition driven by Noise

Main idea of our proof

@ Our proof hinges Laplace’s method and the behavior of H (u, D) as D varies:

o For small D, we are able to use Laplace’s Method to show that there is a
nonzero stationary solution
e For large D, %—7: is negative for all u.

@ Since we know that u = 0 is a solution for all D, this shows that there is more
than one root of H for small D, and only one root for large D
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The case of small D

Find u such that it is a root of H(u, D), i.e. as D — 0,

_ Jexp (=5 Pu(v)) vidy
Jexp (—5Pu(v)) dv

ey
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The case of small D

Find u such that it is a root of H(u, D), i.e. as D — 0,

L Jexp (f%Pu(v)) vidv

= 1
Jexp (—%Pu(v)) dv 1
Laplace’s Method tells us that this z must be such that
(27D)* [H(P,(7))| "2 exp (= 5Pu(7)) ¥
un . L o @
(27D)2 [H(Pu(¥))| 2 exp (= 5Pu(P))

where ¥ is the global minimum of P, (v).



Phase Transition for
0000080
Phase Transition driven by Noise

The case of small D

Find u such that it is a root of H(u, D), i.e. as D — 0,

L Jexp (f%Pu(v)) vidv

= 1
Jexp (—%Pu(v)) dv 1
Laplace’s Method tells us that this z must be such that
(27D)* [H(P,(7))| "2 exp (= 5Pu(7)) ¥
un . L o @
(27D)2 [H(Pu(¥))| 2 exp (= 5Pu(P))

where ¥ is the global minimum of P, (v).
@ Find the minima of P,(v) = a% +(1—-a)5 —
@ This global minimum is strictly positive

@ Hence, there is a nonzero stationary solution in addition to u=0
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The case of small D

Find u such that it is a root of H(u, D), i.e. as D — 0,

L Jexp (f%Pu(v)) vidv

= 1
Jexp (—5Pu(v)) dv )
Laplace’s Method tells us that this z must be such that
(27D)* [H(P,(7))| "2 exp (= 5Pu(7)) ¥
un . L o @
(27D)* [H(Pu(¥)| " * exp (= 5Pu(7))

where ¥ is the global minimum of P, (v).

@ Find the minima of P,(v) = a% +(1—-a)5 —

@ This global minimum is strictly positive
@ Hence, there is a nonzero stationary solution in addition to u=0

In order to prove this rigorously, we need to apply an implicit function theorem from
the positive root for D = 0, this needs to compute next orders in the expansion of
Laplace’s theorem and their limits as the noise D — 0. These expansions are not
standard since we need to track carefully the powers of D involved in each term.
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@ We show that H is strictly decreasing in u for D — oo
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o We split the derivative into two pieces, one positive and one negative, and
show that the negative piece compensates for the positive
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The case of D — oo

@ We show that H is strictly decreasing in u for D — oo

o We split the derivative into two pieces, one positive and one negative, and
show that the negative piece compensates for the positive
o This shows that H can have at most one zero for large D
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Varying o and D

@ We have proven analytically that for small D, there is more than one stationary
solutions, while for large D, there is only one
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Varying o and D

@ We have proven analytically that for small D, there is more than one stationary
solutions, while for large D, there is only one

@ Now, numerically consider where in parameter space each of these situations
occur

e Vary v and D and count the number of roots of H
o Compare also to where %—7: is positive and negative
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Exploring the limit & — oo in 2D

Two dimensional bifurcation diagram
1 T T T

g —alpha=1
So0- ||—alpha=10
3 09 —alpha=20
>0al alpha=40
£0.8
g —alpha=60
% 07k ||-—alpha=80
& —alpha=100
S 0.6r B
=
305 il
[
>
S 0.41 1
£
5 0.3r 4
[0}
So.2r 1
g
0.1- 4
E \
> 0 ‘ ‘ ‘ ‘ L

0 0.1 0.5 0.6

0.2 0.3 0.4
D (diffusion coefficient)
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Numerical Exploration

Stability of the stationary solutions in 1D

alpha=1.5
- : . alpha=3.0
kN alpha=4.5

0.9 T

0.7

0.6

051

0.3

021

01r

u (magnitude of the velocity of stationary solution)

-0.1 ! !
0

1
0.1 0.2 0.4 0.5 0.6 0.7

0.3
D (diffusion coefficient)
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Numerical Exploration

Comparing particles to f in 1D

3 T
— True stationary state (D=0.1)
+ Histogram of final state (D=0.1)
—— True stationary state (D=0.2)
o5l Histogram of final state (D=0.2)

[1—True stationary state (D=0.3)

+ Histogram of final state (D=0.3)
True stationary state (D=0.4)
Histogram of final state (D=0.4)

2 H——True stationary state (D=0.5)

Histogram of final state (D=0.5)

—True stationary state (D=0.6)

 Histogram of final state (D=0.6)
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Hydrodynamics via Asymptotic Limit
Bostan-C. (M3AS 2017)

Given a solution to
- . - 1 .. . ’ 1 . - - .
Of° + dive(fv) + gdlvv(f' (a =B )y) = gdlv\-{f (v—ulf]) + oV, f°}

for any o, r such that €]0, 5[, we denote by [ =1 (%) the unique positive solution
of A\(I) = 1 with

foﬁ cos 0" ? sin?"2 9 do

Al =
0 Jy e'<s?sin?~2 0 db

, IRy, d>2.

Then the limit distribution f = lim.\ /¢, is a von Mises-Fisher equilibrium
f = pMia(w) dw on rS?~', where the density p(t, x) and the orientation Q(z, x)
satisfy the macroscopic equations (SOH)

1
dip + div, (p7”§2> =0, (r,x) e Ry xR?

VXP:O

A+ ky r(Q- VO + %(1(, —Q®0)
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Expansion

The behavior of the family (f°). o, as the parameter £ becomes small, follows by
analyzing the formal expansion

e v g
Plugging the above Ansatz into the kinetic equation, leads to the constraints
div, {f(a — BP[*)v} =0

W

divi{f (@ = B} = divo{f (v = ulf]) + Vs } = Q()

and to the time evolution equations

Of + dive(fr) + dive{f® (a — B[ v} = £,(FV)

with

(1) Vi —u v
Lr(f ) o= div{f (v = ulf]) + oV} — div, {f et }Rdf dv'[f]) : }

cutting the development at second order.
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Oth-order term in expansion

Assume that (1 + |v[*)F € M (R?). Then F solves div,{F(a — 8|v|*)v} = 0 in
D'(RY) ie.,

/ (o — B[ )v- Vg dF(v) = 0, forany ¢ € Ci(R?)
R4

if and only if suppF C {0} U rS.
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First term

Oth-order term in expansion

Assume that (1 + |v[*)F € M (R?). Then F solves div,{F(a — 8|v|*)v} = 0 in
D'(RY) ie.,

/ (o — B[ )v- Vg dF(v) = 0, forany ¢ € Ci(R?)
R4

if and only if suppF C {0} U rS.

Let F € M, (R?) be a non negative bounded measure on R?. We denote by (F) the
measure corresponding to the linear application

v [ oty + [ v (W) LaoF(v),

for all p € CO(RY).

Elimination

For any f € M, (R x R?) such that div,{f(a — B|v]*)v} € My(R? x RY), we
have (div, {f(c — B|v|*)v}) = 0.
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Forany/ € Ry, ) € S, we introduce the von Mises-Fisher distribution
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Asymptotic limit

Von Mises Distribution
Forany/ € Ry, ) € S, we introduce the von Mises-Fisher distribution

exp (lQ . %)

/ dw, wers’™"
./;{;d—lexp (IQ . %) dw ! w, w 7

Mo (w) dw =

Kernel of the averaged collision operator

Let F € M’ (R?) be a non negative bounded measure on R?, supported in 7S*~".
The following statements are equivalent:
1. (Q(F)) = 0, that is

[u§ote s 3 ()| w3 (o) o

forall P € C*(rS$*).
2. There are p € R, 2 € S such that F = pMndw where [ € R satisfies

Jo cos b &0sin?"20do o

s . . — - M
Jo eteos? sin?=% 6 do r?
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Conclusions & Open Problems

@ Stability of the symmetric and non-symmetric stationary states as solutions of
the homogeneous problem is not analytically known.

@ Uniqueness of the non symmetric equilibria except symmetries is open.
@ Phase transitions from ordered to disordered state driven by noise in the
inhomogeneous case should be explored.
@ Reduced Hydrodynamics recovered from the whole space local Cucker-Smale
model with noise by asymptotic limits.
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