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Collective behavior and self-organization

The mathematical description of emerging collective phenomena and
self–organization in systems composed of a large number of individuals has
gained an increasing interest in heterogeneous research communities in
biology, robotics and social sciences.

In order reduce the computational cost of microscopic models ruling the
dynamics of individual agents, it is of utmost importance to derive the
corresponding kinetic and macroscopic dynamics.
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The role of uncertainty

As far as the laws of mathematics refer to reality, they are not certain, and as far
as they are certain, they do not refer to reality.

A. Einstein

How can we model the realistic dynamics, since interaction forces cannot be
considered as universal as the physical ones? How can we make use of the
large amount of data available (from the network for example)?

An essential step in the development of modeling real phenomena is
represented by the introduction of stochastic parameters reflecting the
uncertainty in the terms defining the interaction rules.1

This is particularly relevant in many problems in the natural and
socio-economic sciences where the interaction rules are based on observations
and empirical evidence. In such cases we can have at most statistical
information on the modeling parameters 2

1D. Xiu ’10; S. Jin, D. Xiu and X. Zhu ’16; S. Jin, J. Hu ’16; G. Dimarco, L. Pareschi, M.Z.
’17; A. Tosin, M. Z. ‘18; J. A. Carrillo, L. Pareschi, M. Z. ‘19

2M. Bongini, M. Fornasier, M. Hansen, M. Maggioni ‘17
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Uncertain kinetic modeling
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Boltzmann-type modelling

Uncertain binary interactions

We consider general binary interaction models. Let us denote with v, w ∈ V ⊆ R
the pre-interaction states and with v∗, w∗ ∈ V ⊆ R the post-interaction states
taking the general form

v∗ = v + γ [p1(θ)v + q1(θ)w] +D(v)η,

w∗ = w + γ [p2(θ)v + q2(θ)w] +D(w)η.

where

pi, qi, i = 1, 2 depend on random input θ ∈ IΘ ⊆ R, θ ∼ Ψ(θ)

γ > 0 is a given constant

D(·) represents the local relevance of the diffusion

η is a centered r.v. with finite moments (at least three).

Remark: In the introduced dynamics we considered two random quantities with
radically different meanings: η represent fluctuations over the interactive part of
the dynamics, thereby summarizing all sources of modification of the microscopic
states that are not modelled explicitly from the binary interactions. On the other
hand θ indicates a structural uncertainty in the model parameters.
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Boltzmann-type modelling

Uncertain binary interactions
The aggregate behavior of the system is then described by Boltzmann-type
equations for the evolution of the distribution functions g(v, t), f(θ, v, t)

d

dt

∫
V

ϕ(v)f(θ, v, t) dv =

1

2

〈∫∫
V 2

(ϕ(v∗) + ϕ(w∗)− ϕ(v)− ϕ(w)) f(θ, v, t)f(θ, w, t) dv dw

〉
where ϕ(·) : V → R is a test function, and 〈·〉 denotes the expectation w.r.t. η. At
the numerical level we have

0. Pick θ ∈ IΘ
1. Pick randomly a pair of particles: let v, w be their states

2. Update (v, w)→ (v∗, w∗) with the binary rule parametrised by θ

3. Repeat from point 1.

A posteriori statistics of {f(·, ·, θ)}θ∈IΘ
E[f ](v, t) =

∫
IΘ

f(θ, v, t)Ψ(θ)dθ, Var(f)(v, t) =

∫
IΘ

f2(θ, v, t)Ψ(θ)dθ−E[f ]2
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Boltzmann-type modelling

Uncertain binary interactions
The aggregate behavior of the system is then described by Boltzmann-type
equations for the evolution of the distribution functions g(v, t), f(θ, v, t)

d

dt

∫
V

ϕ(v)g(v, t) dv

=
1

2

〈∫
IΘ

∫∫
V 2

(ϕ(v∗) + ϕ(w∗)− ϕ(v)− ϕ(w)) g(v, t)g(w, t) dv dwdΨ(θ)

〉
= Q(g, g)(v, t)

where ϕ(·) : V → R is a test function, and 〈·〉 denotes the expectation w.r.t. η. At
the numerical level we have

0. Pick randomly a pair of particles: let v, w be their states

1. Sample θ ∈ IΘ according to the pdf Ψ(θ).

2. Update (v, w)→ (v∗, w∗) with the binary rule parametrised by θ

3. Repeat from point 0.

In practice we average the collision operator Q with respect to θ ∈ IΘ.
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Boltzmann-type modelling

Example: The Kac model

The Kac model is obtained from the introduced general binary interaction rule
with the choices

p1(θ) = q2(θ) = cos(θ), p2(θ) = −q1(θ) = sin(θ),

being θ uniformly distributed in IΘ = [0, 2π], i.e. θ ∼ U([0, 2π]). We consider
v, w ∈ R and D ≡ 0. The resulting Kac models have the following features

The energy is conserved (v∗)2 + (w∗)2 = v2 + w2 for all θ ∈ IΘ.

The momentum is not conserved (unless θ = 0, 2π)

Assume mg(0) =
∫
R vg(v, 0)dv = 1, mf (θ, 0) =

∫
R vf(θ, v, 0)dv = 1

then mg(t) = e−t and mf (θ, t) = e(cos(θ)−1)t.

We have mE[f ] = 1/2π
∫ 2π

0
e(cos(θ)−1)tdθ, and mg,mE[f ] → 0 for t→ +∞

but:

mg goes to zero exponentially fast in time

mE[f ] ≥
1√
2πt

erf

(
π

√
t

2

)
= O

(
t−1/2

)
for t→ +∞ (quite slow!)
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Boltzmann-type modelling

Example: aggregation/consensus model

A basic set-up of aggregation models is derived from the general binary
interaction rule

v∗ = v + q(θ)(w − v),

w∗ = w + q(θ)(v − w),

and v, w ∈ R. Let us assume q(θ) = q0 + λθ with θ ∼ U([−1, 1]), q0 ∈ (0, 1) and
λ > 0. The resulting Boltzmann models for aggregation have the following
features

The mean is conserved, indeed v∗ + w∗ = v + w. We suppose at time t = 0
mg = 0 and mf = 0.

There is aggregation/consensus if the system converges to δ0(v).
We compute:

Eg(t) = e2(q
2
0−q0+

1
3
λ2)t, for consensus 0 < λ <

√
q0(1− q0)

Var(θ)

Ef (θ, t) = e2(q
2
0−q0+λ

2θ2+λ(2q0−1)θ)t

EE[f ](t) =
1

4λ

√
π

2t
e−t/2

[
erfi(ξ+

√
t)− erfi(ξ−

√
t)
]
, with ξ±=±

√
2λ+

2q0−1√
2
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Boltzmann-type modelling

Conditions for aggregation/consensus models
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Figure: Aggregation/consensus regions in the case θ ∼ U([−1, 1]). Red: condition for
the deterministic model with Var(θ) = 1/3. Blue: condition for the stochastic model
(0 < λ ≤ min{q0, 1− q0}). We can show that Eg = o(EE[f ])
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Boltzmann-type modelling

Boltzmann model for aggregation/consensus

- 3 -1 0 1 3
0

1

2

3

4

5

(a) E(f)(τ, v)

- 3 -1 0 1 3
0

1

2

3

4

5

(b) g(τ, v)

Figure: Approximation of transient distribution for the Boltzmann model for consensus
dynamics at time steps t = 2, t = 4. The black dashed vertical line represents the
asymptotic Dirac distribution centered in the (conserved) null mean. Evolution
computed through standard Monte Carlo method for the Boltzmann equation (L.
Pareschi, G. Russo ‘02; L. Pareschi, G. Toscani ‘13)
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Boltzmann-type modelling

Fokker-Planck asymptotics

Let us concentrate to the aggregation case where the interactions read

v∗ = v+ γp(θ, v, w)(w− v) +D(v)η, w∗ = w+ γp(θ, w, v)(v−w) +D(w)η.

In order to gain a more detailed insight into the large time behavior of the
introduced Boltzmann-type modeling we can resort to the so-called quasi-invariant
limit. 3 In the time scale τ = γt we consider

γ → 0+, σ2/γ → σ2

and we consider the scaled distributions f(θ, v, τ/γ), g(v, τ/γ). Those
distributions are weak solutions of the nonlocal Fokker-Planck equations

∂τf(θ, v, τ) = ∇v ·
[
P[f ]f +

σ2

2
∇v(D2f)

]
, P =

∫
V

P (θ, v, w)f(θ, v, τ)dv

∂τg(v, τ) = ∇v ·
[
P̄[g]g +

σ2

2
∇v(D2g)

]
, P̄ =

∫
V

∫
IΘ

P (θ, v, w)dΨ(θ)g(v, τ)dv

3G. Toscani ‘06; C. Villani ‘98
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Boltzmann-type modelling

Uncertain Bounded confidence case
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Figure: (a) Sketch of bounded confidence interactions. (b) Asymptotic distributions of
the deterministic and stochastic Fokker-Planck equations v ∈ [−1, 1], D(v) = 1− v2 and
bounded confidence interactions p(θ, v, w) = χ(|v − w| ≤ ∆(θ)), ∆(θ) = ∆0 + aθ,
θ ∼ U([−1, 1]). In particular we considered ∆0 = 3/4 and a = 1/4. (c) Evolution of the
energies of the two models. In both cases we considered a SP method in the collocation
setting. (L. Pareschi, M. Z. ‘18; G. Dimarco, L. Pareschi, M. Z. ‘17, pictures from A.
Tosin, M. Z. ‘18)
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Boltzmann-type modelling

Example: stochastic kinetic opinion model

Kinetic models for opinion formation study the evolution of a homogeneous
density function f(θ, v, τ), v ∈ I = [−1, 1] 4

∂τf(θ, v, τ) = ∂v (P[f ](θ, v, τ)f(θ, v, τ)) +
σ2

2
∂2
v(D(v)f(θ, v, τ)),

where

P[f ](θ, v, τ) =

∫
I
P (v, w, θ)(v − w)f(θ, w, τ) dw

is the nonlocal term. In some cases explicit steady states are known. For example
if P = P (θ) and D = (1− v2)2 then u =

∫
I fw dw is a conserved quantity and

f∞(θ, v) =
C0,θ

(1− v2)2

(
1 + v

1− v

)P (θ)u/(2σ2)

exp

{
−P (θ)(1− uv)

σ2 (1− v2)

}
where C0,θ is a normalization constant.

4G. Toscani ’06; B. Düring, P.A. Markowich, J.F. Pietschmann, M.T. Wolfram ’09; G. Albi,
L. Pareschi, M.Z. ’14; A. Tosin, M. Z. ‘18;
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Boltzmann-type modelling

Example: stochastic kinetic wealth exchange model

The study of wealth exchanges between a large number of agents can be reduced
in the following kinetic model for the evolution of the density function f(θ, v, τ),
v ∈ R+ 5

∂τf(θ, v, τ) + ∂v (B[f ](θ, v, τ)f(θ, v, τ)) =
σ2(θ)

2
∂2
v(D2(v)f(θ, v, τ)),

where B[f ](θ, v, τ) =

∫
R+

α(v, w)(v − w)f(θ, w, τ) dw.

Steady states now present the formation of power-law tails and for α ≡ 1 and
D(v) = v reads

f∞(θ, v) =
(µ(θ)− 1)µ(θ)

Γ(µ(θ))v1+µ(θ)
exp

(
−µ(θ)− 1

v

)
, µ(θ) = 1 + 2/σ2(θ) > 1

where µ(θ) is the so-called Pareto exponent and we assumed
∫
R f
∞(θ, v)v dv = 1.

5S. Cordier, L.Pareschi, G. Toscani ’05; G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani ‘18
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Boltzmann-type modelling

Example: swarming model with uncertainties

Let us consider a kinetic model for swarming with self-propulsion an diffusion 6 for
the evolution of the density f = f(θ, x, v, τ), x ∈ Rdx , v ∈ Rdv , θ ∈ Rdθ

∂τf(θ, x, v, τ) + v · ∇xf(θ, x, v, τ) =

∇v · [H[f ]f(θ, x, v, τ) +D(θ)∇vf(θ, x, v, τ))] ,

where now

H[f ] = α(|v|2 − 1)v +

∫
Rdv

∫
Rdx

H(θ, x, y)(v − w)f(θ, y, w, τ)dw dy,

with α > 0 and H(θ;x, y) = H(θ; |x− y|). In the space homogeneous case
stationary solutions have the form

f∞(θ, v) = C exp

{
− 1

D(θ)

(
α
|v|4
4

+ (1− α)
|v|2
2
− uf∞(θ) · v

)}
, C > 0.

6F. Cucker, S. Smale ‘07; A. B. T. Barbaro, J. A. Cañizo, J. A. Carrillo, P. Degond ‘16
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Boltzmann-type modelling

Uncertain Vlasov-Fokker-Planck modeling

All the examples of kinetic models just described are framed in the general
nonlocal nonlinear Vlasov-Fokker-Planck (VFP) setting

∂tf(θ, x, v, t) + v · ∇xf(θ, x, v, t) =

∇v ·
[
P[f ]f(θ, x, v, t) +∇vDf(θ, x, v, t)

]
,

where x ∈ Rdx , v ∈ Rdv and D ≥ 0, and we introduced the nonlocal operator

P[f ](θ, x, v, t) =

∫
Rdx

∫
Rdv

P (x, y, v, w, θ)(w − v)f(θ, y, w, t) dw dy

depending on the random input θ ∈ Rdθ , θ ∼ Ψ(θ).
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Stochastic Galerkin Methods
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Stochastic Galerkin methods

Polynomial chaos expansions

Let us consider v ∈ Rd, d ≥ 1, the time interval [0, T ] ⊂ R+ and a function

f(θ, v, t) : IΘ × Rd × [0, T ]→ Rd, f ∈ L2(Ω,F , P )

solution of the differential problem

∂tf(θ, v, t) = J (θ, v; f). (D)

The generalized polynomial chaos method decompose the function f(θ, v, t)
through a polynomial chaos expansion, i.e.

f(θ, v, t) =
∑
m∈N

f̂m(v, t)Φm(θ), (S)

where {Φm}m∈N is a family of polynomials defining an orthogonal basis of

L2(Ω,F , P ) and f̂m is the Galerkin projection of the function f into the
polynomial space

f̂m(v, t) = Eθ[f(θ, v, t)Φm(θ)].
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Stochastic Galerkin methods

Polynomial chaos expansions

Truncate the series (S) up to order M and obtain

fM =

M∑
m=0

f̂m(v, t)Φm(θ)

and consider the Galerkin projections of the differential problem (D)

∂tEθ[f(θ, v, t)ΦΨ(θ)] = Eθ
[
J (θ, v; fM )ΦΨ(θ)

]
, h = 0, . . . ,M.

In general we have obtained a coupled system of M + 1 deterministic equations

∂tf̂h(v, t) = J (v, (f̂k)Mk=0), h = 0, . . . ,M

whose solution spectrally converges to the solution of the original problem (D)
under suitable conditions.
Statistical quantities of interest are defined in terms of the projections:

Eθ[f(θ, v, t)] ≈ f̂0(v, t), Var(f(θ, v, t)) ≈
M∑
h=0

f̂2
h(v, t)Eθ[Φ2

h(θ)]− f̂2
0 (v, t)

Mattia Zanella (Politecnico di Torino) UQ for kinetic equations November 28, 2018 20 / 42
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Stochastic Galerkin methods

Polynomial chaos expansion for mean-field problems

Let us consider the initial nonlinear VFP problem with nonlocal drift

P[f ](θ, x, v, t) =

∫
Rdx

∫
Rdv

P (x, y, v, w, θ)(v − w)f(θ, y, w, t)dw dy.

The gPC-SG formulation of the mean–field equation is given by the following
system of deterministic differential equations h = 0, . . . ,M

∂tf̂h(x, v, t) + v · ∇xf̂h(x, v, t) =

∇v ·
[ M∑
k=0

Phk[f̂ ](x, v, t)f̂k(x, v, t) +∇vD(v)f̂h(x, v, t)
]
,

where

Phk[f̂ ](x, v, t) =
1

‖Φ2
h‖

M∑
m=0

∫
IΘ

P[f̂m]Φk(θ)Φm(θ)ΦΨ(θ)dΨ(θ).

Mattia Zanella (Politecnico di Torino) UQ for kinetic equations November 28, 2018 21 / 42
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Stochastic Galerkin methods

Stability of the gPC decomposition

We indicate with ‖̂f‖L2 the standard L2 norm of the vector f̂ = (f̂0, . . . , f̂M ). We

can easily observe that ‖fM‖L2(Ω) = ‖̂f‖L2 thanks to the orthogonality of
{Φk(θ)}Mk=0 in L2(Ω)

‖fM‖L2(Ω) =

∫
IΘ

∫
Rdx×Rdv

(
M∑
k=0

f̂kΦk(θ)

)2

dvdxdΨ(θ)

and we have7

Theorem

If ‖∇vPhk‖L∞ ≤ C, with C > 0 for all h, k = 0, . . . ,M then we have

‖̂f‖2L2 ≤ et(C+2)‖̂f(0)‖2L2

7J. A. Carrillo, M. Z. in progress
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Stochastic Galerkin methods

Problems and challenges

In vector notations to introduced problem reads

∂tf̂(x, v, t) + v · ∇xf̂(x, v, t) = ∇v ·
[
P[̂f](x, v, t)̂f(x, v, t) +∇vD(v)̂f(x, v, t)

]
,

where f̂ = (f̂0, . . . , f̂M )T , P = (Phk)Mh,k=0 and D is a diagonal matrix. In the
introduced problem uncertainty increases the dimensionality and the complexity of
the kinetic modelling 8. Hence, the development of numerical methods presents
several difficulties due to the intrinsic structural properties of the solution

Non negativity of the distribution function

Conservation of invariant quantities

Entropy dissipation

Accurate description of the steady states

8G. Dimarco, L. Pareschi, M. Z. ‘17; J. A. Carrillo, L. Pareschi, M. Z. ‘18
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Stochastic Galerkin methods

gPC–SP schemes for simplified mean-field problems

Let us consider first the case in which the uncertainty comes only from the initial
data and P[f ](x, v, t) = P (x, v, t) is independent of f . Then the matrix P is
diagonal and we need to solve the decoupled set of equations

∂τ f̂h(x, v, t) + v · ∇xf̂h(x, v, t) =

∇v · [Phh(x, v, t)f̂h(x, v, t) +∇vD(v)f̂h(x, v, t)], h = 0, . . . ,M

A structure preserving scheme 9 can be implemented for each f̂h(x, v, t) to
preserve the asymptotic behavior of each gPC projection (and its positivity).
Remark: For a more general P, however, the SP approach cannot be applied and
the construction of a gPC expansion which preserves the steady state is
challenging.

9L. Pareschi, M. Z. ‘18
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Micro–Macro gPC schemes

Micro–Macro decompositions

Let us concentrate on the homogeneous setting in dv = 1 to simplify notations.
We obtain the nonlinear nonlocal Fokker-Planck problem with uncertainties

∂tf(θ, v, t) = J (f, f)(θ, v, t)

where

J (f, f)(θ, v, t) = ∂v

(
P[f ](θ, v, t)f(θ, v, t) + ∂vD(v)f(θ, v, t)

)
,

and assume it admits the unique steady state f∞. We consider the micro-macro
decomposition

f = f∞ + g,

where g = g(θ, v, t) is s.t.
∫
gφ(v) dv = 0 for some moments (ex. φ(v) = 1, v).

Since it is easily seen that J (f∞, f∞) = 0 we obtain

J (f, f) = J (g, g) + L(f∞, g), L(f∞, g) = ∂w

(
P[f∞]g + P[g]f∞

)
.

Note that, the only admissible steady state is now g ≡ 0.

Mattia Zanella (Politecnico di Torino) UQ for kinetic equations November 28, 2018 25 / 42
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Micro–Macro gPC schemes

Micro–Macro gPC approximation

We consider now the gPC approximation as{
∂tĝh(v, t) = Ĵh(ĝ, ĝ) + L̂h(f̂∞, ĝ),

fM = f∞,M + gM ,

where

Ĵh(ĝ, ĝ) = ∂v

[ M∑
k=0

Phk[ĝ]ĝk(v, t) + ∂vD(v)ĝk(v, t)
]
,

L̂h(f̂∞, ĝ) = ∂v

[ M∑
k=0

(
Phk[f̂∞]ĝk(v, t) + Phk[ĝ]f̂∞k (v, t)

) ]
.

Proposition

The function gM = 0 is an admissible local equilibrium of the micro-macro gPC
scheme and therefore fM = f∞,M is a local equilibrium state.

Mattia Zanella (Politecnico di Torino) UQ for kinetic equations November 28, 2018 26 / 42
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Numerical tests

Micro–Macro gPC: Opinion dynamics

The stationary solution of the opinion model with P (θ) = 0.5 + 0.25θ,

θ ∼ U([−1, 1]) and D(v) = σ2

2 (1− v2)2 is given by

f∞(v; θ) =
C

(1− v2)2

(
1 + v

1− v

)P (θ)u/(2σ2)

exp

{
−P (θ)

(1− uv)

σ2(1− v2)

}
.

We consider central difference discretizations of the derivatives in w and compare
a standard gPC approximation with the micro-macro gPC approximation (residual
equilibrium scheme).
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Introduction Uncertain kinetic modeling Stochastic Galerkin Methods Monte Carlo gPC Conclusion

Numerical tests

Opinion dynamics Bounded Confidence case 10

Figure: Evolution of the bounded confidence model with
P (θ, v, w) = χ(|v − w| ≤ ∆(θ)), ∆(θ) = 3/4 + 1/4θ, θ ∼ U([−1, 1]), v, w ∈ [−1, 1].
Left: Eθ[f ]. Right: Var(f). Time interval t ∈ [0, 50].

10R. Hegselmann, U. Krause ‘02; A. Tosin, M. Z. ‘18
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Numerical tests

Micro–Macro gPC: Wealth evolution

The stationary solution for the mean–field wealth model can be obtained for

a(w,w∗) ≡ 1 and D(v, θ) = σ2(θ)
2 v2, with θ ∼ U([−1, 1])

f∞(v; θ) =
(µ− 1)µ

Γ(µ)v1+µ
exp

{
− µ− 1

v

}
, µ(θ) = 1 + 2/σ2(θ), σ2 = 0.1 + 0.05θ
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Numerical tests

Micro-Macro gPC: swarming with phase transition
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Numerical tests

Micro-Macro gPC: 2D swarming with phase transition

Figure: Top row: 2D swarming model with D(θ) = 0.15 + 0.1θ, large time left mean
distribution right variance. Bottom row: 2D swarming model with D(θ) = 0.75 + 0.1θ,
large time left mean distribution right variance.
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Numerical tests

Micro-Macro gPC: swarming with phase transition
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Monte Carlo gPC Methods
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Mean-field limit

Microscopic version

In absence of diffusion all the introduced kinetic models can be derived from a
second order system of ODEs for (xi(θ, t), vi(θ, t)) ∈ Rdx × Rdv , i = 1, . . . , N
with the general structure 11

ẋi(θ, t) = vi(θ, t),

v̇i(θ, t) = S(θ; vi) +
1

N

N∑
j=1

[H(θ; |xi − xj |)(vj − vi) +

A(θ, xi, xj) +R(θ, xi, xj)]

where S(θ, vi) is a self-propelling term, H(θ, |xi − xj |) the alignment process,
A(θ, xi, xj) the attraction dynamics and R(θ, xix,j ) the short-range repulsion.

Proposition

In the pure alignment case with H = K(θ)/(1 + |xi − xj |2)γ(θ) unconditional
alignment for K(θ) > 0 and γ(θ) < γ0 ≤ 1/2 for all θ .

11J. A. Carrillo, M. Fornasier, G. Toscani, F. Vecil ‘10; G. Albi, L. Pareschi ‘13
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Mean-field limit

The distribution of θ
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Mean-field limit

BBGKY hierarchy with uncertainty

Let us define the N−particles density function

f (N) = f (N)(θ, x1, v1, . . . , xN , vN , t),

whose total mass is conserved. Hence, its evolution is described by the Liouville
equation

∂tf
(N) +

N∑
i=1

vi · ∇xif (N) = − 1

N

N∑
i=1

∇vi ·
N∑
j=1

Hij(θ)(vj − vi)f (N),

then we define f (1)(θ, x1, v1) and f (2)(θ, x1, v1, x2, v2, t) the marginal densities of
f (N) and let f(θ, x1, v1, t) = limN→+∞ f (1) and

f̃(θ, x1, v1, x2, v2, t) = lim
N→+∞

f (2) =︸︷︷︸
ansatz

f(θ, x1, v1, t)f(θ, x2, v2, t).

We can prove 12 that f = f(θ, x, v, t) is a density function solution of

∂tf + v · ∇xf = ∇v · [H[f ]f ]

12C. Cercignani, R. Illner, M. Pulvirenti ’94; S.-Y. Ha, E. Tadmor ‘08
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MCgPC Algorithm

MCgPC methods

Similarly to what we have described for the mean-field equations we can consider
the gPC approximation of the microscopic system for

xi(θ, t) ≈ xMi =

M∑
k=0

x̂i,kΦk(θ), vi(θ, t) ≈ vMi =

M∑
k=0

v̂i,kΦk(θ)

for which we obtain the following polynomial chaos expansion for all h = 0, . . . ,M


˙̂xi,h = ˙̂vi,h,

˙̂vi,h =
1

N

N∑
j=1

M∑
k=0

eijhk(v̂j,k − v̂i,k), eijhk =
1

‖Φh(θ)‖2
∫
Rdθ

HijΦh(θ)Φk(θ)dρ(θ)

and therefore in the limit N → +∞ the distribution fM is solution of the mean
field problem

∂tf
M + v · ∇xfM = ∇v · [H[fM ]fM ]

Mattia Zanella (Politecnico di Torino) UQ for kinetic equations November 28, 2018 37 / 42



Introduction Uncertain kinetic modeling Stochastic Galerkin Methods Monte Carlo gPC Conclusion

MCgPC Algorithm

MCgPC methods

Similarly to what we have described for the mean-field equations we can consider
the gPC approximation of the microscopic system for

xi(θ, t) ≈ xMi =

M∑
k=0

x̂i,kΦk(θ), vi(θ, t) ≈ vMi =

M∑
k=0

v̂i,kΦk(θ)

for which we obtain the following polynomial chaos expansion for all h = 0, . . . ,M
˙̂xi,h = ˙̂vi,h,

˙̂vi,h =
1

|Si|
∑
j∈Si

M∑
k=0

eijhk(v̂j,k − v̂i,k), |Si| = S

and therefore in the limit N → +∞ the distribution fM is solution of the mean
field problem

∂tf
M + v · ∇xfM = ∇v · [H[fM ]fM ]

Mattia Zanella (Politecnico di Torino) UQ for kinetic equations November 28, 2018 37 / 42



Introduction Uncertain kinetic modeling Stochastic Galerkin Methods Monte Carlo gPC Conclusion

MCgPC Algorithm

MCgPC methods

Instead of a cost O(M2N2) we then achieve the strongly decreased cost
O(M2SN), S � N . The expected solution is then reconstructed from expected
positions and velocities of the microscopic gPC system. 13

Stochastic mean–field equation

gPC for mean–field equation

Solution coupled system of PDEs

Approximation expected solution

System of ODEs, N � 0

MC-gPC algorithm

Reconstruction expected solution

The MCgPC method is still spectrally accurate in the stochastic variable θ
provided we have a smooth dependence of the particle solution from the random
field.

13J. A. Carrillo, L. Pareschi, M. Z. ‘18
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Numerical tests

Validation
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Numerical tests

Example 1: 1D & 2D Flocking
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Numerical tests

Example 2: Mill

Mattia Zanella (Politecnico di Torino) UQ for kinetic equations November 28, 2018 41 / 42


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}




Introduction Uncertain kinetic modeling Stochastic Galerkin Methods Monte Carlo gPC Conclusion

Conclusion

In many equations for the description of the collective dynamics we need to
include the effects of uncertainty since at most we have statistical
information on the parameters characterizing the interactions.
For kinetic models, the construction of numerical schemes which are capable
to guarantee highly accurate steady states description, positivity and entropy
dissipation is essential to have a correct description of the dynamics.
Stochastic Galerkin methods are spectrally accurate in the random field but
may lead to the loss of important structural properties of the numerical
solution of VFP equations. Micro-macro schemes have been designed to
preserve the large time behavior.
Monte Carlo gPC (MCgPC) methods are spectrally accurate in the random
field and permit to ensure the positivity of statistical quantities.
Future research directions

Optimal control in the presence of uncertainty
MCgPC for the diffusive models and for the Boltzmann equation with
uncertainties
Hydrodynamic limit with uncertainty
. . .
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